k-nearest neighbors (kNN)

The problem we'll solve today

Given an image of a handwritten digit, say which digit it is

Some more examples:

MNIST dataset

- Training set of 60,000 images and their labels
- Test set of 10,000 images and their labels

- Training images $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(60000)}$
- Labels $y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(60000)}$ are numbers from 0-9

1410119134857268U32264141

- Training images $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(60000)}$
- Labels $y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(60000)}$ are numbers from 0-9

How to classify a new image x?

- Find its nearest neighbor amongst the $\boldsymbol{x}^{(i)}$
- Return $y^{(i)}$

Data as vectors

How to measure the distance between images?

$$x^{(1)} = (0, 0, 0, \dots, 0.6, 1, 1, 1, 0, 0, 1, 1, 0.8, \dots, 0, 0, 0)$$

 $y^{(1)} = 6$

The distance function

Euclidean distance in two dimensions is

Euclidean distance in higher dimension

Two images *a* and *b*:

$$a = (a_1, a_2, a_3, \dots, a_{784})$$

 $b = (b_1, b_2, b_3, \dots, b_{784})$

The Euclidean distance between a and b is

$$\|a - b\|_{2} = \sqrt{(a_{1} - b_{1})^{2} + (a_{2} - b_{2})^{2} + \ldots + (a_{784} - b_{784})^{2}}$$
$$= \sqrt{\sum_{i=1}^{784} (a_{i} - b_{i})^{2}}$$

Training images $x^{(1)}, x^{(2)}, x^{(3)}, \ldots, x^{(60000)}$ Labels $y^{(1)}, y^{(2)}, y^{(3)}, \ldots, y^{(60000)}$

Training images $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(60000)}$ Labels $y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(60000)}$

To classify a new image \boldsymbol{x}

- Return $y^{(i)}$

Accuracy of Nearest Neightbor on MNIST

Predictions on all points in the Training set

Question: What is the accuracy?

Accuracy of Nearest Neightbor on MNIST

Predictions on all points in the Test set

Question: What is the accuracy?

Examples of errors

Test set of 10,000 points

• 309 are misclassified

Examples of errors:

Test image	6	2	2	8	7
Nearest neighbor	4	0	8	9	9

Ideas for improvement: *k*-NN

To classify a new point:

- Find the k nearest neighbors in the training set
- · Return the most common label amongst them

MNIST:

k
 1
 3
 5
 7
 9
 11

 Test error (%)

$$3.09$$
 2.94
 3.13
 3.10
 3.43
 3.34

 need to find k before final eval on the test set

Validation

Train on Training set with $k = 1 \implies$ Evaluate on the Validation set Train on Training set with $k = 3 \implies$ Evaluate on the Validation set Train on Training set with $k = 5 \implies$ Evaluate on the Validation set

Cross-validation

~~~~~	17777	1111			INNENNE		X X X X X X X X		
Training Data						Validatior		Holdout	
						XXXXI			
Training Data				Vali	dation			Holdout	
Training Data			Validation					Holdout	
Training Data	Validation							Holdout	
Validation	Training Data							Holdout	
111111									
% 10%	20%	30%	40%	50%	60%	70%	80%	90%	10

#### **Other distance function**

$$a = (a_1, a_2, \dots, a_m)$$
  $b = (b_1, b_2, \dots, b_m).$ 

Cosine similarity

$$d_{\cos}(a,b) = \frac{a \cdot b}{\|a\|_2 \|b\|_2} = \frac{a}{\|a\|_2} \cdot \frac{b}{\|b\|_2}$$

measures the angle between vector a and b.

$$-1 \le d_{\cos}(a, b) \le 1.$$

# **Examples**

$$a = (1, 2, 2)$$
  $b = (3, 4, 0)$ 

#### **Distance between time series**



use dynamic time warping

#### *k*-NN regression

y is continuous x = test data  $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$  are k-nearest neighbors of x. Prediction:

$$\hat{y} = \frac{1}{k} \sum_{i=1}^{k} y_i$$

