Decision Trees



Decision trees

Framingham dataset:
high risk or low risk of heart at-
tack?

« create subsequent rules to
split the data by the values
of features

« can split at numerical or
categorical features

Age
>=46.5 <46.5
[Hypertension low risk
Yes No
[ glucose low risk
>=122.5 <122.5
high risk low risk




Components of a tree

Definitions
Node N O d e

A basic unit that contains

data (can be a feature or a
decision) edge edge

Edge
The connection between Node Node
two nodes




Components of a tree

Definitions

Child
A connected node below.

Parent
A connected node above.

For example, Y and Z are chil-
dren of X,
X isaparentof Y and Z.




Components of a tree

Root
The top node in a tree.

A node with no further edge

Leaf [

Root

leaf

leaf

leaf

leaf




Components of a tree

Depth of a node

The number of edges to travel
from the root to that node
Example: The depth of Ais 3

Maximum depth
Maximum of all possible depths
in the tree

Root

l]




Example

Toy data with 2 features
We’ll try Maximum Depth = 2 (in other words, 2 splits)
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Categorical features

No one-hot encoding needed!
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Uncertainty
How can we quantitatively determine the best value to split?
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Information measure
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Measure the mixture of points by a function I:

Misclassification rate: I(S) = 1 — max(p,1 — p)
Entropy: I(S) = —plogp — (1 — p)log(1 — p)

Gini index: I(S) = p(1 — p)
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Expected information

Expected information of a split is the
weighted average of the measures
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Tree splitting algorithm

for each leaf in the tree do:
for each feature do:
for each splitting value do:
compute expected information

split at leaf+feature+value with smallest expected
information
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Overfitting
We can keep going until we get 100% accuracy on the training set
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But the model overfits the data: that one red point is probably an outlier.



Test error as number of nodes grow

Error

true error

training error

\

Number of nodes in tree




Preventing overfitting

How to reduce overfitting?
« specify the minimum number of samples required to split
(min_samples_split)
« specify the maximum depth of the tree (max_depth)

« specify the minimum number of samples in each child node
(min_samples_leaf)

« specify the maximum number of features to consider at each split
(max_features)

« pruning i.e. build a full tree then remove the nodes until (cross) validation
accuracy stops improving.

All these options are available in scikit-learn



Decision tree: pros and cons

Advantages
. Simple, Easy to interpret
- Accept both numerical and categorical features.
- Accept any number of classes.
- Can fit to any dataset.



Decision tree: pros and cons

Advantages
. Simple, Easy to interpret
- Accept both numerical and categorical features.
- Accept any number of classes.
- Can fit to any dataset.

Disadvantages:
- Decision trees performs (e.g. test accuracy) worse than SVM and
sometimes logistic regression

- How can we improve decision trees?



Random Forest



Bagging
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Decision trees with bagging
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A single tree
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Random forest

Random forest is a decision trees with bagging

-+ one more source of randomness:
« At each split, select a random subset of features

. If there are d features, \/d features are used in each split

Tree-1 Tree-2 Tree-n



Hyperparameters in random forest

Tree-1 Tree-2 Tree-n



Random forest algorithm

RandomForest(T, m, D, ng)
Given a data set S of n labeled points:
fort=1to T

Bootstrap ng < n points from S

Fit a decision tree h; to these points

At each node,
Select m variables at random from d variables

Find the best split on the selected m variables

Grow the tree to maximum depth
Final prediction: majority vote of hq, ..., hr



Test errors vs number of trees
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Regression trees
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Splitting in regression tree



Random forest
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