
Decision Trees



Decision trees

Framingham dataset:
high risk or low risk of heart at-
tack?

• create subsequent rules to
split the data by the values
of features

• can split at numerical or
categorical features
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Components of a tree

Definitions
Node
A basic unit that contains
data (can be a feature or a
decision)

Edge
The connection between
two nodes
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Components of a tree

Definitions
Child
A connected node below.

Parent
A connected node above.

For example, Y and Z are chil-
dren of X,
X is a parent of Y and Z.
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Components of a tree

Root
The top node in a tree.

Leaf
A node with no further edge
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Components of a tree

Depth of a node
The number of edges to travel
from the root to that node
Example: The depth of A is 3

Maximum depth
Maximum of all possible depths
in the tree
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Example
Toy data with 2 features

We’ll try Maximum Depth = 2 (in other words, 2 splits)
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Categorical features

No one-hot encoding needed!
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Uncertainty
How can we quantitatively determine the best value to split?
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Information measure

vs

Measure the mixture of points by a function I:

Misclassification rate: I(S) = 1− max(p, 1− p)

Entropy: I(S) = −p log p− (1− p) log(1− p)

Gini index: I(S) = p(1− p)



Expected information
Expected information of a split is the
weighted average of the measures
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Example
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Example
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Tree splitting algorithm

for each leaf in the tree do:
for each feature do:

for each splitting value do:
compute expected information

split at leaf+feature+value with smallest expected
information
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Overfitting
We can keep going until we get 100% accuracy on the training set
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But the model overfits the data: that one red point is probably an outlier.



Test error as number of nodes grow

Number of nodes in tree
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Preventing overfitting
How to reduce overfitting?

• specify the minimum number of samples required to split
(min_samples_split)

• specify the maximum depth of the tree (max_depth)

• specify the minimum number of samples in each child node
(min_samples_leaf)

• specify the maximum number of features to consider at each split
(max_features)

• pruning i.e. build a full tree then remove the nodes until (cross) validation
accuracy stops improving.

All these options are available in scikit-learn



Decision tree: pros and cons

Advantages
• Simple, Easy to interpret
• Accept both numerical and categorical features.
• Accept any number of classes.
• Can fit to any dataset.

Disadvantages:
• Decision trees performs (e.g. test accuracy) worse than SVM and
sometimes logistic regression

• How can we improve decision trees?
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Random Forest



Bagging



Decision trees with bagging



Hard problem for a single tree



A single tree



25 Voted tree



Random forest
Random forest is a decision trees with bagging

+ one more source of randomness:
• At each split, select a random subset of features

• If there are d features,
√
d features are used in each split



Hyperparameters in random forest



Random forest algorithm
RandomForest(T, m, D, n0)

Given a data set S of n labeled points:

for t = 1 to T :
Bootstrap n0 < n points from S

Fit a decision tree ht to these points

At each node,
Select m variables at random from d variables
Find the best split on the selected m variables

Grow the tree to maximum depth
Final prediction: majority vote of h1, . . . , hT



Test errors vs number of trees



Regression trees



Splitting in regression tree



Random forest


