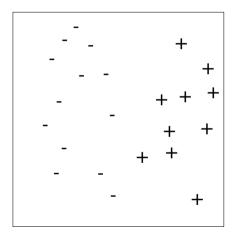
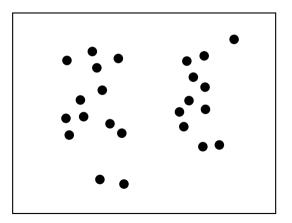
Clustering

Unsupervised learning

Instead of

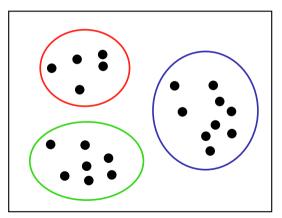


we have no label this time



Clustering

We can split data into different groups



This is called **clustering**.

Clustering

There are several ways to do clustering

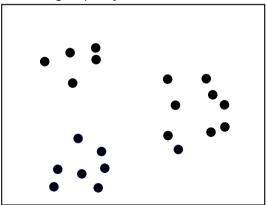
- *k*-mean clustering
- Gaussian mixture models
- Hierarchical clustering
- Spectral clustering

k-mean clustering

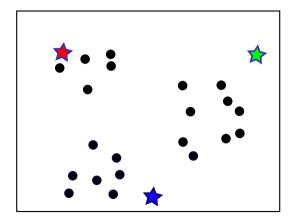
k-mean clustering

First, choose k, the number of clusters

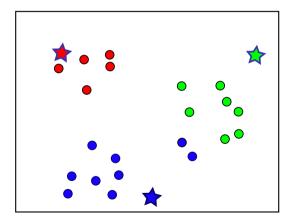
- Find k points called **centers**
- cluster the points into k groups by the closest centers



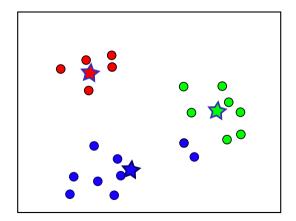
Randomly choosing the initial centers (in this case, k = 3)



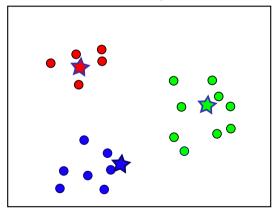
Assign points to their closest centers



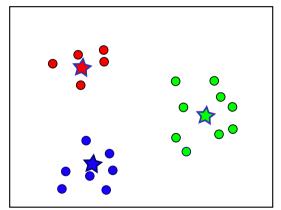
New centers are the averages of each color



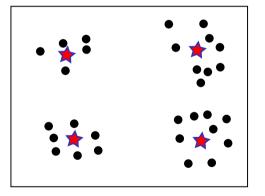
· Repeat until the centers stop moving

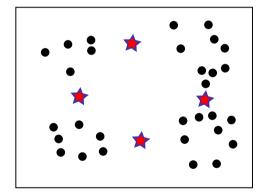


· Repeat until the centers stop moving

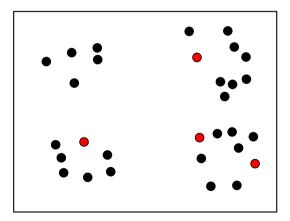


Initialization matters



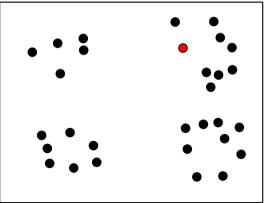


How to choose the initial centers? Method 1: pick centers randomly



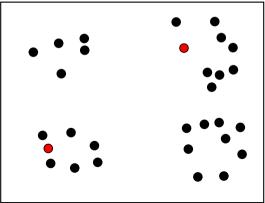
Method 2: k-means++ (Arthur & Vassilvitskii, 2006)

- · Pick the first point randomly from the data as the first center
- Pick the next centers with higher chance of picking a point that is far away from the previous centers



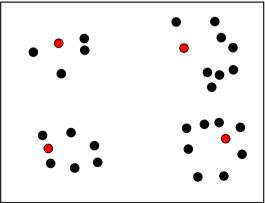
Method 2: k-means++ (Arthur & Vassilvitskii, 2006)

- · Pick the first point randomly from the data as the first center
- Pick the next centers with higher chance of picking a point that is far away from the previous centers



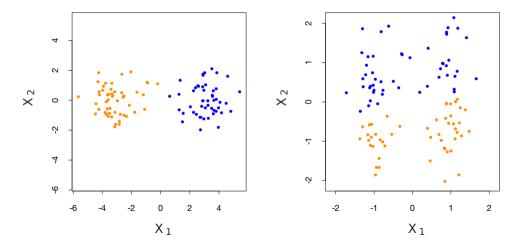
Method 2: k-means++ (Arthur & Vassilvitskii, 2006)

- · Pick the first point randomly from the data as the first center
- Pick the next centers with higher chance of picking a point that is far away from the previous centers



k-mean clustering and normalization

2-mean clustering before and after normalization



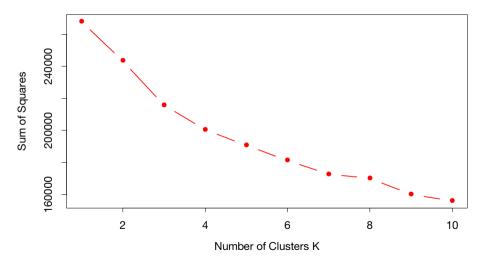
Choosing k

- Data: x_1, x_2, \ldots, x_n . Clusters: C_1, C_2, \ldots, C_k
- Centers: $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_k$
- Look at the total within-cluster sum of squares:

$$W_k = \frac{1}{2} \sum_{\ell=1}^k \sum_{i,j \in C_\ell} \|x_i - x_j\|^2$$
$$= \sum_{\ell=1}^k |C_\ell| \sum_{i \in C_\ell} \|x_i - \bar{x}_\ell\|^2,$$

where $|C_{\ell}|$ is the number of points in cluster C_{ℓ}

Plot of W as k increases



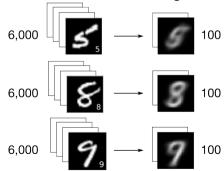
Application: Unsupervised Classification

- **Problem 1**: Want to classify the pictures of handwritten numbers, but the data has no labels (probably from budget issues...)
- We can do $10\mbox{-mean clustering on the data.}$

10 centers of the clustering

Application: Learning with time/memory constraint

- **Problem 2**: We have 60,000 images with labels, but it's taking too long to train all of them (for example SVM with RBF kernel requires computing $\approx 60000^2$ pairwise distances!)
- We can instead train on 1,000-mean clustering on the data

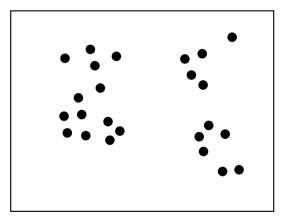


Application: Image Compression

Hierarchical clustering

Hierarchical clustering

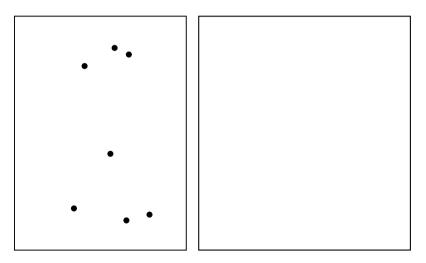
Sometimes we want to be flexible about choosing (k). For example



Cluster with k = 2 and 3?

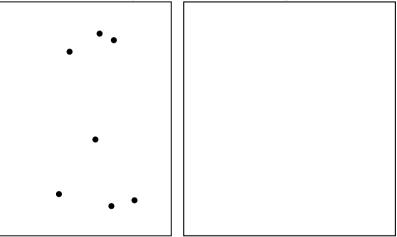
Hierarchical Clustering

Suppose we have the following data



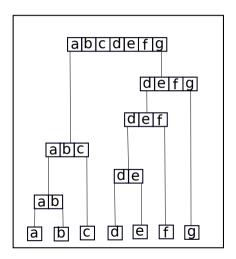
Hierarchical clustering

Step 1: Start from a closest points. Make a dendrogram at the same time

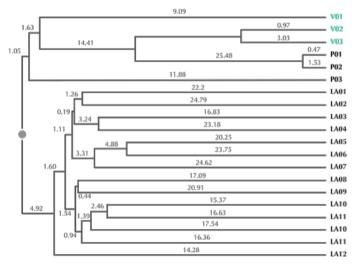


Hierarchical clustering

Step 2: Make a cut where you want the actual clustering



Tracking HIV outbreaks



Metzker et al. (2002), Molecular evidence of HIV-1 transmission in a criminal case

Comparison between clustering algorithms

