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Attention is All you Need

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, |. Polosukhin (2017)
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A smaller picture
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Inside an Encoder
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Zooming in on an Encoder
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Idea behind Self-Attention

Consider an input sentence:

The animal didn't cross the street because it was too tired

What does “it” in this sentence refer to? The animal, the cross or the
street?



Self-Attention as finding relevant words
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Try it yourself


https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

Calculating Self-Attention

Step 1: From an input vectors, create Query vector, Key vector and Value vector
Input
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Calculating Self-Attention

Step 2: Compute the scores of each word by taking dot-product of its query and
the keys of the all words

Input
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Calculating Self-Attention

Step 3: Divide by 8 (or the square root of the dimension of the key vectors) and
apply Softmax

Input
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Calculating Self-Attention

Step 4: Multiply each value vector by the softmax score, then sum the vectors.
Irrelevant words with low softmax scores will not contribute much to the sum
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Self-Attention with Multiple inputs

We can write multiple dot-products as a matrix multiplication
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Self-Attention in one equation

softmax(




Multi-head Attention

Motivation: want multiple Query/Key/Value combinations



Multi-head Attention

Motivation: want multiple Query/Key/Value combinations
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Multi-head Attention

Calculating attention separately in
eight different attention heads

A J

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

but the feed-forward layer only takes a single matrix. How do we combine these
into a single matrix?



Combining matrices

1) Concatenate all the attention heads 2) Multiply with a weight

matrix that was trained
jointly with the model

T e T T T T 1 X

3) The result would be the ©~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN
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Summary of Multi-head Self-Attention

1) This is our 2) We embed 3) Split into 8 heads.
input sentence* each word* We multiply X or
with weight matrices

X WoC

EREE

W@
* In all encoders other than #0,
we don't need embedding.
We start directly with the output
of the encoder right below this one

—HH i

4) Calculate attention
using the resulting
Q/K/V matrices
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5) Concatenate the resulting ~ matrices,
then multiply with weight matrix to
produce the output of the layer
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Revisit the Visualization
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Positional Encoding

Issue: The model does not know the order of words



Positional Encoding

Issue: The model does not know the order of words
Solution: Add different vectors to the sequence of vectors (positional encoding)
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Positional Encodings of first 10 words

If each word is a 64-dim vector. Below are positional encodings of first 10 words
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Missing details in the encoder

After Self-Attention and Feed-forward, apply Residual Connection and Layer
normalization
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Review: Batch normalization
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Layer normalization
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Inside the Encoder
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The Decoder: Cross-Attention

Qutput
Probabilities

Forward Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At 4 At 4
- J/ \C —
Positional & A Positional
Encoding Encoding
Input Output
Embedding Embedding

Add & Norm

J

((Add & Norm Je—~

Add & Norm
Feed

Multi-Head
Attention

!

Inputs

!

Outputs



Decoder’s outputs
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Transformer-based Language
Models



GPT3
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Al
DUNGEON

You arrive at a small wooden store with sheet music in the window. The door is
locked so you knock. The music suddenly stops and you hear footsteps coming
to the door.

"Hello?" A voice says behind the door.

"I'm looking for the book of essence," You say.

"What do you want it for?" The voice answers, a bit of an edge to it.

> You tell them you are a humble seeker of knowledge.

"T am a humble seeker of knowledge," You answer.

"Ah, I see. You seek to learn about the essence of reality, and the universe." The
voice says. "I know of this book. [ am the guard of this library. The only way
you can get to it, is if you get past me. Are you up for the challenge?"

> You ask them what the challenge is.
"The challenge is. you have to win a game of chess against me. If you win, then
you may try to take the book. I will get the board." The door unlocks and opens.



BERT

<cls> | love this red car
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Fine-tuning BERT
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