Logistic regression DS351

Learning

Learning probability distribution from data

Many ways of learning

- ► Supervised learning ← today's topic
- Unsupervised learning
- Semi-supervised learning
- Online learning
- Reinforcement learning
- and so on...

Supervised learning

Labeled data:

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Supervised learning

Labeled data:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Goal: From these data, learn a function f that accurately maps x to y

$$f(x) = y$$

Supervised learning

Labeled data:

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Goal: From these data, learn a function f that accurately maps x to y

$$f(x) = y$$

New data

 x_{n+1}

What is the most likely label of y? Our prediction is $\hat{y} = f(x)$

So far, our tasks that we've covered can be framed as supervised learning tasks

▶ Regression: predict $y \in (-\infty, \infty)$ from x_1, x_2, \ldots, x_p

So far, our tasks that we've covered can be framed as supervised learning tasks

- ▶ Regression: predict $y \in (-\infty, \infty)$ from x_1, x_2, \ldots, x_p
- Forecasting: predict y_{T+1} from y_1, y_2, \ldots, y_T

So far, our tasks that we've covered can be framed as supervised learning tasks

- ▶ Regression: predict $y \in (-\infty, \infty)$ from x_1, x_2, \ldots, x_p
- Forecasting: predict y_{T+1} from y_1, y_2, \ldots, y_T
- ▶ Classification: predict $y \in \{1, 2, ...\}$ from $x_1, x_2, ..., x_p$

Classification

Given features, want to predict **binary** or **categorical** variables

features \Rightarrow label $\{0, 1\}, \{\text{True, False}\}$ $\{1, 2, \dots, N\}$

Classification problems

Is this a **cat** or a **dog**? (cat)

Classification problems

What is the object in a particular image? (e.g. robot, automatic car)

Classification problems

Shoulder Bags for Women Large Ladies Crossbody Bag with Tassel

★★★★☆~630

\$3899 - \$3999

Minimalist Clean Cut Pebbled Faux Leather Tote Womens Shoulder Handbag

\$1790 - \$1890

Crossbody Bag for Women Waterproof Shoulder Bag Messenger Bag Casual Nylon Purse Handbag

★★★★☆~197

\$1849 - \$2199

SQLP Fashion Women's Leather Handbags ladies Waterproof Shoulder Bag Tote Bags

\$25% -\$33%

Will I click on these products?

Women Tote Bag Handbags PU Leather Fashion Hobo Shoulder Bags with Adjustable Shoulder Strap

\$4299

YNIQUE Satchel Purses and Handbags for Women Shoulder Tote Bags Wallets

★★★★☆ ~ 260

\$14°°-\$27°°

Fanspack Women's Canvas Hobo Handbags Simple Casual Top Handle Tote Bag Crossbody Shoulder Bag Shopping Work Bag

★★★★☆×225

\$1399

Laptop Tote Bag,Laptop Bag for Women Large Capacity Briefcase Lightweight Computer Bags Fit Up to 15.6 in Laptop Notebook

\$4300

Probabilistic framework

we could predict the probability of being in each class:

a marke		
So Material G	0.724	leopard
	0.181	jaguar
	0.062	cheetah
	0.03 s	now leopard
	0.003	egyptian cat
Sum a read and the second		

Applications

Ranking of the search results by probabilities

Google

```
dragon
```

Q

Dragon Speech Recognition - Get More Done by Voice | Nuance https://www.nuance.com/dragon.html -

Productivity. There's a Dragon for everyone who wants to be more productive. From making status updates and searching the web to creating reports and ...

How To Train Your Dragon | Official Website | DreamWorks Animation https://www.howtotrainyourdragon.com/ -

Hiccup & Toothless welcome you to the world of DreamWorks Dragons, the home of How To Train Your Dragon, Riders of Berk, Defenders of Berk & School of ...

Year of the Dragon: Fortune and Personality – Chinese Zodiac 2019 https://chinesenewyear.net > Zodiac > Dragon •

The Dragon is the fifth of all zodiac animals. Learn why Dragons are strong and independent figures, but they yearn for support and love.

Medical diagnosis

Looking at the heart rate, blood pressure etc., what is the chance of contracting a heart disease?

Binary classification

Given: an instance with features x and possible label y = 0 or y = 1. Goal: Predict the probability of the instance being in class 0 and 1:

$$P(y=0|x)$$
 and $P(y=1|x)$

We then make the following prediction:

$$\hat{y} = egin{cases} \mathbf{0} & ext{if } P(y=1|\mathbf{x}) \leq 0.5 \ \mathbf{1} & ext{if } P(y=1|\mathbf{x}) > 0.5 \end{cases}$$

Multiclass classification

Given: an instance with features x and possible label y = 1, 2, ..., N. Goal: Predict the probability of the instance being in class 1, 2, ..., N:

$$P(y = j | x)$$
 for $j = 1, 2, \dots, N$

We then make the following prediction:

$$\hat{y} = J$$
 if $P(y = J | \boldsymbol{x}) > P(y = j | \boldsymbol{x})$ for any other j

Predicting probability

Can we use linear regression to do this?

We need some function that stays between 0 and 1.

Predicting probability

Instead, we need something like this:

That is, we are looking for a function with the following properties:

- 1. Stays between 0 and 1 $% \left(1-\frac{1}{2}\right) =0$
- 2. Continuous
- 3. Symmetric

Logistic regression

Logistic regression Find *coefficients* $A = [a_0, a_1, \ldots, a_m]$ such that $P(y = 1|x) = \frac{1}{1 + e^{-(a_0 + a_1 \times 1 + \dots + a_m \times m)}} = \frac{1}{1 + e^{-A \cdot x}}$ best fit the data

Logistic regression

Logistic regression

Find coefficients $A = [a_0, a_1, \dots, a_m]$ such that $P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-(a_0 + a_1 x_1 + \dots + a_m x_m)}} = \frac{1}{1 + e^{-A \cdot \mathbf{x}}}$ best fit the data

What is P(y = 0|x)?

Log-odds

How can we interpret the linear function $a_0 + a_1x_1 + \ldots + a_mx_m$ in this model?

$$\log\left(\frac{P(y=1 \mid \boldsymbol{x})}{P(y=0 \mid \boldsymbol{x})}\right) =$$

Log-odds

How can we interpret the linear function $a_0 + a_1x_1 + \ldots + a_mx_m$ in this model?

$$\log\left(\frac{P(y=1 \mid \boldsymbol{x})}{P(y=0 \mid \boldsymbol{x})}\right) =$$

- This is called log-odds or logit.
- ▶ Example: 1 unit increase in $x_1 \Rightarrow a_1$ unit increase in log-odds

Principle: If the data point (x, y) already appears in the data, then the probability P(y|x) is high.

$$= [x_1, x_2, \dots, x_{784}]$$

Goal: Maximize the probability P(y|x) for all data points (x, y).

Given data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)}), \quad y = 0 \text{ or } 1$$

Given data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)}), \quad y = 0 \text{ or } 1$$

Likelihood = Probability that the data is generated from our model $L(A) = P(y^{(1)}|x^{(1)})P(y^{(2)}|x^{(3)}) \dots P(y^{(n)}|x^{(n)})$

Given data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)}), \quad y = 0 \text{ or } 1$$

Likelihood = Probability that the data is generated from our model
$$\begin{split} L(A) &= P(y^{(1)}|x^{(1)})P(y^{(2)}|x^{(3)})\dots P(y^{(n)}|x^{(n)}) \\ &= \frac{1}{1+e^{-A \cdot x^{(1)}}} \cdot \frac{1}{1+e^{-A \cdot x^{(2)}}} \cdots \frac{1}{1+e^{-A \cdot x^{(n)}}} \end{split}$$

Given data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)}), \quad y = 0 \text{ or } 1$$

Likelihood = Probability that the data is generated from our model $L(A) = P(y^{(1)}|x^{(1)})P(y^{(2)}|x^{(3)}) \dots P(y^{(n)}|x^{(n)})$ $= \frac{1}{1 + e^{-A \cdot x^{(1)}}} \cdot \frac{1}{1 + e^{-A \cdot x^{(2)}}} \cdots \frac{1}{1 + e^{-A \cdot x^{(n)}}}$ Find $A = [a_0, a_1, a_2, \dots, a_m]$ that maximizes L(A)

Example: Credit card data

Is the user going to default on their credit card? y = 1: default, y = 0: not default

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Example: Credit card data

Is the user going to default on their credit card? y = 1: default, y = 0: not default

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

1 baht increase in balance = 0.0057 unit increase in log-odds

$$\blacktriangleright \ Z = \frac{\hat{\beta}_i}{\mathsf{SE}(\hat{\beta}_i)}.$$

H₀: β₁ = 0 is rejected; there is an association between balance and the probability of default

Predictions

Comparing card defaulting of student and non-student

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Predictions

Comparing card defaulting of student and non-student

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

$$\begin{aligned} \hat{\rho}(y = 1 | x_1 = 1,500, x_2 = 40, x_3 = 1) \\ &= \frac{1}{1 + e^{-(-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1)}} = 0.058 \\ \hat{\rho}(y = 1 | x_1 = 1,500, x_2 = 40, x_3 = 0) \\ &= \frac{1}{1 + e^{-(-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0)}} = 0.105. \end{aligned}$$

Non-students have higher chance of defaulting their cards.

Framingham dataset

- Label: Diagnosed with a heart disease in the next 10 years
- Features: gender, smoking, blood pressure, heart rate, blood sugar, cholesterol, BMI

The model

$$P(y = 1 | \text{CigsPerDay, Chol, BMI ...})$$
$$= \frac{1}{1 + e^{-(0.04\text{CigsPerDay} + 0.002\text{Chol} + 0.003\text{BMI} + ...)}}.$$

- ▶ If $P(y = 1 | \text{CigsPerDay, Chol, BMI } ...) = 0.2 \Rightarrow$, classify y as 0
- ▶ If $P(y = 1 | \text{CigsPerDay}, \text{ Chol}, \text{ BMI } ...) = 0.8 \Rightarrow \text{classify } y \text{ as } 1$
- ▶ With everything else fixed, higher CigsPerDay ⇒ higher chance of heart disease.
- \blacktriangleright +1 cigarette per day = +0.04 log-odds.

Cross-validation accuracy

Accuracy =
$$\frac{\#\text{Correctly classified}}{\#\text{Total}}$$

Evaluation by train-test split

- Split data a training set and test set
- Train the model on the training set
- Computing the accuracy of the model's predictions on the test set

	1NN	3NN	5NN	7NN	9NN	Logistic
Accuracy	77.55	81.96	83.18	83.96	84.29	85.40

Multiclass logistic regression

N-class classification Data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)}), y \in \{1, 2, \dots, N\}$$

Multiclass logistic regression

N-class classification Data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)}), \quad y \in \{1, 2, \dots, N\}$$

Model parameters: N-1 vectors $A_1, A_2, \ldots, A_{N-1}$

$$P(y = 1 | \mathbf{x}) = \frac{e^{A_1 \cdot \mathbf{x}}}{1 + \sum_{i=1}^{n-1} e^{A_i \cdot \mathbf{x}}}$$
$$P(y = 2 | \mathbf{x}) = \frac{e^{A_2 \cdot \mathbf{x}}}{1 + \sum_{i=1}^{n-1} e^{A_i \cdot \mathbf{x}}}$$

$$egin{aligned} & P(y=N-1|oldsymbol{x}) = rac{e^{A_{N-1}\cdotoldsymbol{x}}}{1+\sum_{i=1}^{n-1}e^{A_i\cdotoldsymbol{x}}} \ & P(y=N|oldsymbol{x}) = rac{1}{1+\sum_{i=1}^{n-1}e^{A_i\cdotoldsymbol{x}}} \end{aligned}$$

. . .

Example

When we use the model after training: $\mathbf{x} = (25, 10, 0.5, 82)$

Example

When we use the model after training: *x* = (25, 10, 0.5, 82)
If
P(y = 1|x) = 0.3, P(y = 2|x) = 0.3, P(y = 3|x) = 0.4
classify y = 3.

Example

randomly pick y = 2 or y = 3.