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Learning

Learning probability distribution from data



Many ways of learning

▶ Supervised learning ← today’s topic

▶ Unsupervised learning

▶ Semi-supervised learning

▶ Online learning

▶ Reinforcement learning

▶ and so on...



Supervised learning

Labeled data:
(x1, y1), (x2, y2), . . . , (xn, yn)

Goal: From these data, learn a function f that accurately maps x
to y

f (x) = y

New data
xn+1

What is the most likely label of y? Our prediction is ŷ = f (x)



Supervised learning

Labeled data:
(x1, y1), (x2, y2), . . . , (xn, yn)

Goal: From these data, learn a function f that accurately maps x
to y

f (x) = y

New data
xn+1

What is the most likely label of y? Our prediction is ŷ = f (x)
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Supervised learning tasks

So far, our tasks that we’ve covered can be framed as supervised
learning tasks

▶ Regression: predict y ∈ (−∞,∞) from x1, x2, . . . , xp

▶ Forecasting: predict yT+1 from y1, y2, . . . , yT
▶ Classification: predict y ∈ {1, 2, . . .} from x1, x2, . . . , xp
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Classification

Given features, want to predict binary or
categorical variables



Classification problems

Is this a cat or a dog?
(cat)



Classification problems

What is the object in a
particular image?

(e.g. robot, automatic car)



Classification problems

Will I click on
these products?

(no)



Probabilistic framework

Instead of directly predicting 0’s and 1’s

leopard
jaguar
cheetah

snow leopard

egyptian cat

1

0

0

0

0

we could predict the probability of being in each class:

leopard

jaguar
cheetah

snow leopard

egyptian cat

0.724

0.181

0.062

0.03

0.003



Applications

▶ Ranking of the search results by probabilities

▶ Medical diagnosis
▶ Looking at the heart rate, blood pressure etc., what is the

chance of contracting a heart disease?



Binary classification

Given: an instance with features x and possible
label y = 0 or y = 1.
Goal: Predict the probability of the instance being
in class 0 and 1:

P(y = 0|x) and P(y = 1|x)

We then make the following prediction:

ŷ =

{
0 if P(y = 1|x) ≤ 0.5

1 if P(y = 1|x) > 0.5



Multiclass classification

Given: an instance with features x and possible
label y = 1, 2, . . . ,N .
Goal: Predict the probability of the instance being
in class 1, 2, . . . ,N :

P(y = j |x) for j = 1, 2, . . . ,N

We then make the following prediction:

ŷ = J if P(y = J |x) > P(y = j |x) for any other j



Predicting probability

Can we use linear regression to do this?

0

1

We need some function that stays between 0 and 1.



Predicting probability

Instead, we need something like this:

0

1



Logistic regression

That is, we are looking for a function with the
following properties:

1. Stays between 0 and 1

2. Continuous

3. Symmetric



Logistic regression

Sigmoid function: σ(x) = 1
1+e−x

0

0.5

1

6 4 2 0 2 4 6

▶ If x → −∞ then σ(x)→ 0.

▶ If x →∞ then σ(x)→ 1.



Logistic regression
Find coefficients A = [a0, a1, . . . , am] such that

P(y = 1|x) = 1

1 + e−(a0+a1x1+...+amxm)
=

1

1 + e−A·x

best fit the data

0

1



Logistic regression

P(y = 1|x) = 1

1 + e−(a0+a1x1+...+amxm)
=

1

1 + e−A·x

0

1

▶ If a0 + a1x1 + . . .+ amxm →∞ then σ(x)→ 1.

▶ If a0 + a1x1 + . . .+ amxm → −∞ then σ(x)→ 0.



Logistic regression
Find coefficients A = [a0, a1, . . . , am] such that

P(y = 1|x) = 1

1 + e−(a0+a1x1+...+amxm)
=

1

1 + e−A·x

best fit the data

What is P(y = 0|x)?



Log-odds

How can we interpret the linear function a0 + a1x1 + . . .+ amxm in
this model?

log

(
P(y = 1 | x)
P(y = 0 | x)

)
=

▶ This is called log-odds or logit.

▶ Example: 1 unit increase in x1 ⇒ a1 unit increase in log-odds
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Maximum-likelihood principle

Principle: If the data point (x , y) already appears
in the data, then the probability P(y |x) is high.

= [x1,x2,...,x784]

Goal: Maximize the probability P(y |x) for all data
points (x , y).



Maximum-likelihood principle

Given data:

(x (1), y (1)), (x (2), y (2)), . . . , (x (n), y (n)), y = 0 or 1

Likelihood = Probability that the data is generated from our model

L(A) = P(y (1)|x (1))P(y (2)|x (3)) . . .P(y (n)|x (n))

=
1

1 + e−A·x(1)
· 1

1 + e−A·x(2)
· · · 1

1 + e−A·x(n)

Find A = [a0, a1, a2, . . . , am] that maximizes L(A)
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Example: Credit card data

Is the user going to default on their credit card?
y = 1: default, y = 0: not default

Coefficient Std. error Z-statistic P-value
Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115
student[Yes] -0.6468 0.2362 -2.74 0.0062

▶ 1 baht increase in balance = 0.0057 unit increase in
log-odds

▶ Z = β̂i

SE(β̂i )
.

▶ H0 : β1 = 0 is rejected; there is an association between
balance and the probability of default
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Predictions

Comparing card defaulting of student and non-student

Coefficient Std. error Z-statistic P-value

Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115
student[Yes] -0.6468 0.2362 -2.74 0.0062

p̂(y = 1|x1 = 1, 500, x2 = 40, x3 = 1)

=
1

1 + e−(−10.869+0.00574×1,500+0.003×40−0.6468×1)
= 0.058

p̂(y = 1|x1 = 1, 500, x2 = 40, x3 = 0)

=
1

1 + e−(−10.869+0.00574×1,500+0.003×40−0.6468×0)
= 0.105.

Non-students have higher chance of defaulting their cards.
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Framingham dataset

▶ Label: Diagnosed with a heart disease in the next 10 years

▶ Features: gender, smoking, blood pressure, heart rate, blood
sugar, cholesterol, BMI



The model

P(y = 1|CigsPerDay, Chol, BMI ...)

=
1

1 + e−(0.04CigsPerDay+0.002Chol+0.003BMI+...)
.

▶ If P(y = 1|CigsPerDay, Chol, BMI ...) = 0.2⇒, classify y as
0

▶ If P(y = 1|CigsPerDay, Chol, BMI ...) = 0.8⇒ classify y as 1

▶ With everything else fixed, higher CigsPerDay ⇒ higher
chance of heart disease.

▶ +1 cigarette per day = +0.04 log-odds.



Cross-validation accuracy

Accuracy =
#Correctly classified

#Total
Evaluation by train-test split

▶ Split data a training set and test set

▶ Train the model on the training set

▶ Computing the accuracy of the model’s predictions on the test
set

1NN 3NN 5NN 7NN 9NN Logistic

Accuracy 77.55 81.96 83.18 83.96 84.29 85.40



Multiclass logistic regression
N-class classification
Data:

(x (1), y (1)), (x (2), y (2)), . . . , (x (n), y (n)), y ∈ {1, 2, . . . ,N}

Model parameters: N − 1 vectors A1,A2, . . . ,AN−1

P(y = 1|x) = eA1·x

1 +
∑n−1

i=1 eAi ·x

P(y = 2|x) = eA2·x

1 +
∑n−1

i=1 eAi ·x

· · ·

P(y = N − 1|x) = eAN−1·x

1 +
∑n−1

i=1 eAi ·x

P(y = N|x) = 1

1 +
∑n−1

i=1 eAi ·x
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Example

When we use the model after training:
x = (25, 10, 0.5, 82)

▶ If

P(y = 1|x) = 0.3,P(y = 2|x) = 0.3,P(y = 3|x) = 0.4

classify y = 3.

▶ If

P(y = 1|x) = 0.2,P(y = 2|x) = 0.4,P(y = 3|x) = 0.4

randomly pick y = 2 or y = 3.
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