Logistic regression
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Many ways of learning
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Supervised learning < today'’s topic
Unsupervised learning
Semi-supervised learning

Online learning

Reinforcement learning

and so on...



Supervised learning

Labeled data:
(X17y1)7 (X2,)/2)7 ey (XI'H.yn)
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Supervised learning

Labeled data:
(X17y1)7 (X27)/2)7 ey (Xn,_yn)

Goal: From these data, learn a function f that accurately maps x
toy

f(x)=y

New data
Xn+1

What is the most likely label of y? Our prediction is y = f(x)
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Supervised learning tasks

So far, our tasks that we've covered can be framed as supervised
learning tasks

> Regression: predict y € (—00,00) from x1,x2,...,Xp
» Forecasting: predict yr11 from yi,yo,...,y1
» Classification: predict y € {1,2,...} from x1,x2,...,Xp



Classification

Given features, want to predict binary or
categorical variables

{0, 1}, {True, False}

features = label
{1,2,...,N}



Classification problems

Is this a cat or a dog?
(cat)




Classification problems

airplane

bird
cat
deer
dog
frog
horse
ship

truck
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Classification problems
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Probabilistic framework

Instead of directly predicting 0's and 1's

jaguar
cheetah

snow leopard
egyptian cat
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copard
jaguar
q 062 cheetah
0.03 snow leopard
[0.003 egyptian cat




Applications

» Ranking of the search results by probabilities

Google

dragon Q

Dragon Speech Recognition - Get More Done by Voice | Nuance
https://www.nuance.com/dragon.html =

Productivity. There's a Dragon for everyone who wants to be more productive. From making status
updates and searching the web to creating reports and

How To Train Your Dragon | Official Website | DreamWorks Animation
https://www.howtotrainyourdragon.com/ ~

Hiccup & Toothless welcome you to the world of DreamWorks Dragons, the home of How Te Train
“Your Dragon, Riders of Berk, Defenders of Berk & School of

Year of the Dragon: Fortune and Personality — Chinese Zodiac 2019
https:/ichinesenewyear.net » Zodiac » Dragon

The Dragon is the fifth of all zodiac animals. Leam why Dragons are strong and independent figures
but they yeamn for support and love.

» Medical diagnosis

» Looking at the heart rate, blood pressure etc., what is the
chance of contracting a heart disease?



Binary classification

Given: an instance with features x and possible
label y =0 or y = 1.

Goal: Predict the probability of the instance being
in class 0 and 1:

P(y =0|x) and P(y=1|x)
We then make the following prediction:

[0 ifP(y=1x)<05
Y71 ifP(y=1x)> 05




Multiclass classification

Given: an instance with features x and possible
label y =1,2,..., N.

Goal: Predict the probability of the instance being
inclass1,2,...,N:

P(y =jlx) forj=1,2,...,N

We then make the following prediction:

y=Jif P(y = J|x) > P(y = j|x) for any other j




Predicting probability

Can we use linear regression to do this?

1. [ ] o0 o0 o o0 o

Ol ee ooee .

We need some function that stays between 0 and 1.



Predicting probability

Instead, we need something like this:

1. [ ] e o0 o oo o




Logistic regression

That is, we are looking for a function with the
following properties:

1. Stays between 0 and 1
2. Continuous

3. Symmetric



Logistic regression

. . . 1
Sigmoid function: o(x) = =
1
e
0.5
6 -4 -2 2 4 6

» If x = —oo then o(x) — 0.
» If x — oo then o(x) — 1.



Logistic regression

Find coefficients A = [a, a1, - - ., am] such that

1 1
14+ ef(ao+alxl+...+amxm) - 1_|_ efA-x

P(y = 1|x) =
best fit the data
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Logistic regression

1 1

'D(y = 1‘X) = 1+ e—(aotaixi+...+amxm) - 1+ e Ax

1. [ ] e 060 o o0 o

Ol— s

» If ag + a1xy + ...+ amxm — oo then o(x) — 1.

» If ag + aixy + ...+ amXm — —oo then o(x) — 0.



Logistic regression
Find coefficients A = [ag, a1, . . ., am] such that
1 !
1+ e—(ao+a1x1+...+amxm) 1+ e—Ax
best fit the data

Py =1x) =

What is P(y = 0]x)?



Log-odds

How can we interpret the linear function ag + aix1 + ...+ amxm in
this model?

(313)-



Log-odds

How can we interpret the linear function ag + aix1 + ...+ amxm in
this model?

(313)-

» This is called log-odds or logit.

> Example: 1 unit increase in x; = aj unit increase in log-odds



Maximum-likelihood principle

Principle: If the data point (x, y) already appears
in the data, then the probability P(y|x) is high.

= [X4,Xa,...,X784]

Goal: Maximize the probability P(y|x) for all data
points (x, y).
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Maximum-likelihood principle

Given data:

(X(l)’y(l)), (X(2)7y(2))7 e (X(”),y(”)), y=0orl

Likelihood = Probability that the data is generated from our model
L(A) = P(yM[xM)P(y2x3) . Py [x")
B 1 1 1
T 1t e A 14 e A T g AXD)

Find A = [ao, a1, a2, - - ., am] that maximizes L(A)



Example: Credit card data

Is the user going to default on their credit card?
y = 1: default, y = 0: not default

Coefficient Std. error Z-statistic P-value

Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115

student|[Yes] -0.6468 0.2362 -2.74 0.0062




Example: Credit card data

Is the user going to default on their credit card?
y = 1: default, y = 0: not default

Coefficient Std. error Z-statistic P-value
Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 2474 < 0.0001
income 0.0030 0.0082 0.37 0.7115
student|[Yes] -0.6468 0.2362 -2.74 0.0062
» 1 baht increase in balance = 0.0057 unit increase in
log-odds
_ B
> Z= SE(B)"

» Hy : 51 = 0 is rejected; there is an association between
balance and the probability of default



Predictions

Comparing card defaulting of student and non-student

Coefficient  Std. error Z-statistic P-value
Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115
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Predictions

Comparing card defaulting of student and non-student

Coefficient  Std. error Z-statistic P-value
Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115
student[Yes] -0.6468 0.2362 -2.74 0.0062

Aly = 1|x1 = 1,500, x, = 40, x3 = 1)
1

T 1+ e (—10.869+0.00574x1,500+0.003x40—0.6468x1) 0.058
Ay = 1jx; = 1,500, x> = 40, x3 = 0)
1
= 0.105.

- 1+ e—(—10.869+0.00574><1,500+0.003><40—0.6468><0)

Non-students have higher chance of defaulting their cards.



Framingham dataset
» Label: Diagnosed with a heart disease in the next 10 years

P> Features: gender, smoking, blood pressure, heart rate, blood
sugar, cholesterol, BMI



The model

P(y = 1|CigsPerDay, Chol, BMI ...)

1
~ 1 + e (0.04CigsPerDay-+0.002Chol+0.003BMI+...)

» If P(y = 1|CigsPerDay, Chol, BMI ...) = 0.2 =, classify y as
0

» If P(y = 1|CigsPerDay, Chol, BMI ...) = 0.8 = classify y as 1

> With everything else fixed, higher CigsPerDay = higher
chance of heart disease.

> +1 cigarette per day = +0.04 log-odds.



Cross-validation accuracy

#Correctly classified
# Total

Accuracy =

Evaluation by train-test split
» Split data a training set and test set
» Train the model on the training set

» Computing the accuracy of the model’s predictions on the test
set

INN 3NN 5NN 7NN 9NN Logistic
Accuracy 77.55 81.96 83.18 83.96 84.29 85.40




Multiclass logistic regression

N-class classification
Data:

(X(1)7.y(1))’ (X(2)7y(2))7 et (X(n)7y(n))? y e {1’ 27 et N}



Multiclass logistic regression

N-class classification
Data:

(X(1)7y(1))’ (X(2)7y(2))7 et (X(n)7y(n))? .y e {1’ 27 et N}

Model parameters: N — 1 vectors A1, Ao, ..., An_1
A1 X
P(y =1|x) = IL—I—Z"—leAX
A2X
P(y =2|x) = ZH—Z"—leAX
eAN,]_-X
Ply=N-1|x)= ——«——
RN E =T
1
P(y = N|x) =

1+Zn 1eAx
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Example

When we use the model after training:
x = (25,10,0.5,82)

> If
P(y =1[x) = 0.3, P(y = 2|x) = 0.3, P(y = 3|x) = 0.4
classify y = 3.
> If

P(y =1|x) =0.2,P(y =2|x) = 0.4, P(y = 3|x) = 0.4

randomly pick y =2 or y = 3.



	

