Model evaluation DS351

Imbalanced data

both have 90% accuracy, but which model would you prefer?

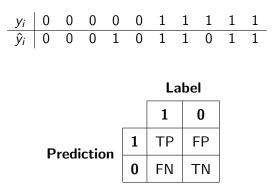
Prediction errors

A model can make two types of error:

		Label				
		1	0			
Prediction	1	correct	False positive			
	0	False negative	correct			

- Type 1: False Positive (0 classified as 1) Ex: False alarm
- Type 2: False Negative (1 classified as 0) Ex: Dangerous items passing a security check

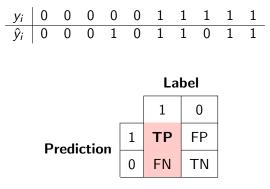
Confusion matrix



True Positive: an instance correctly classified as 1

True Negative: an instance correctly classified as 0

True Positive Rate

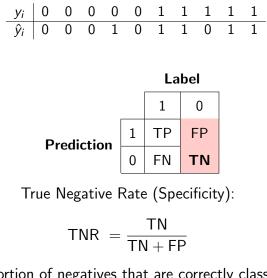


True Positive Rate (Recall or Sensitivity):

$$\mathsf{TPR} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

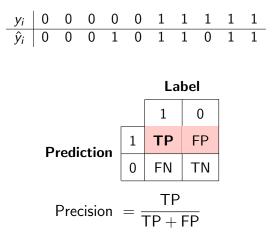
i.e. proportion of positives that are correctly classified as positives

True Negative Rate



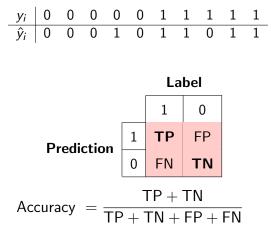
i.e. proportion of negatives that are correctly classified as negatives

Precision



i.e. proportion of positive predictions that are actually positive

Accuracy



i.e. proportion of all instances that are predicted correctly

Example 1

Example 2

What to use?

Use Recall if we want the model to "see" all the positive instances. Examples: security check, tests for deadly diseases

What to use?

Use Recall if we want the model to "see" all the positive instances.

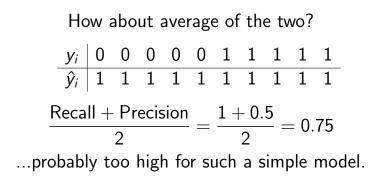
Examples: security check, tests for deadly diseases

 Use Precision if we only care about correct positive predictions.

Examples: Youtube video recommendation, hiring workers

But in some situation, we might want to find a balance between these two scores.

want a way to combine both Precision and Recall



F-score

F-score or **F1-score** is used to find a model that has a nice balance between Precision and Recall

$$F_1 = \frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Fact: The value F_1 is always between Precision and Recall

However, these scores are hard to interpret in practice...what is the meaning of F-score, really?

In business, it might make more sense to evaluate the model in terms of **expected value**

Suppose your company want to implement a simple model that presents advertisement to the users:

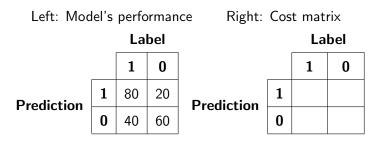
Feature = Ads banner, Label = $\begin{cases} 0 \text{ if user does not click the ads} \\ 1 \text{ if user does click the ads} \end{cases}$

Suppose your company want to implement a simple model that presents advertisement to the users:

Feature = Ads banner, Label =
$$\begin{cases} 0 \text{ if user does not click the ads} \\ 1 \text{ if user does click the ads} \end{cases}$$

Suppose that the the cost of a single ads is 200, and if a user click the ads, you will gain a profit of 100

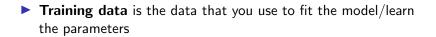
Expected value



Expected value =

Good evaluation practice

Don't evaluate on training data



Don't evaluate on training data

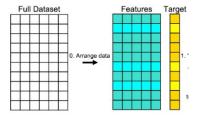
- Training data is the data that you use to fit the model/learn the parameters
- Bad idea to evaluate the model on the training data, as the model has already "seen" this data

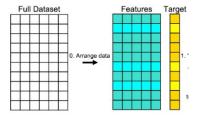
Don't evaluate on training data

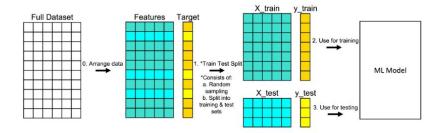
- Training data is the data that you use to fit the model/learn the parameters
- Bad idea to evaluate the model on the training data, as the model has already "seen" this data
- Instead, the model must be evaluated on unseen/future data
- ...but how can we obtain future data?

Fuil Dataset						
			1			
					Г	

Eull Datacat







k-fold cross-validation

allows for more variation in the test data

k-fold cross-validation

allows for more variation in the test data

Splitting data in sklearn

Train-test split: https://scikit-learn.org/stable/modules/generated/ sklearn.model_selection.train_test_split.html

k-fold split: https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.KFold.html