Linear algebra

229351

Points in \mathbb{R}^{n}

\mathbb{R}^{n} is the set of n-dimensional points.

- \mathbb{R}^{1} is a real line.

Points in \mathbb{R}^{n}

\mathbb{R}^{n} is the set of n-dimensional points.

- \mathbb{R}^{2} : height \& width

Points in \mathbb{R}^{n}

\mathbb{R}^{n} is the set of n-dimensional points.

- \mathbb{R}^{3} : height, width \& depth

Points in \mathbb{R}^{n}

\mathbb{R}^{n} is the set of n-dimensional points.

- \mathbb{R}^{3781}

Example: ratings of all movies l've watched

$$
\begin{aligned}
& R=[4.0, ?, ?, 3.5, \ldots, 5.0] \\
& \text { A-team ABBA Zoolander }
\end{aligned}
$$

Points in \mathbb{R}^{n}

\mathbb{R}^{n} is the set of n-dimensional points.

- \mathbb{R}^{171146}

Example: ratings of all movies I've watched

$$
\begin{aligned}
W= & {[120,0,0,0, \ldots, 0] } \\
& \text { a aardvard zyzzyva }
\end{aligned}
$$

Is there a way to compare these high-dimensional vectors?

Vectors

- connects between two points.
- has size and direction.

Two coordinate systems

- Rectangular coordinate
- Polar coordinate

Vectors

From this point on, any element in \mathbb{R}^{n} will be considered as a vector.

Sum of vectors

$$
\binom{a_{1}}{b_{1}}+\binom{a_{2}}{b_{2}}=\binom{a_{1}+a_{2}}{b_{1}+b_{2}}
$$

Example

$$
\binom{1}{2}+\binom{3}{4}=
$$

Word vectors

- Similar words
\rightarrow small angle
- Irrelevant words
\rightarrow right angle
- Opposite words
\rightarrow opposite
directions

Dot product

Let $w_{1}, w_{2} \in \mathbb{R}^{n}$ where

$$
\begin{aligned}
& w_{1}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& w_{2}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

Then the dot product between w_{1} and w_{2} is

$$
w_{1} \cdot w_{2}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}
$$

Dot product

Let $w_{1}, w_{2} \in \mathbb{R}^{n}$ where

$$
\begin{aligned}
& w_{1}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& w_{2}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

Then the dot product between w_{1} and w_{2} is

$$
w_{1} \cdot w_{2}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}
$$

and the size of w_{1} is

$$
\left\|w_{1}\right\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}} .
$$

Angle between vectors

Fact:

$$
w_{1} \cdot w_{2}=\left\|w_{1}\right\|\left\|w_{2}\right\| \cos \theta
$$

Example

Find the angle between $w_{1}=(1,2)$ and $w_{2}=(-2,1)$

Another angle

$$
w_{1} \cdot w_{2}=\left\|w_{1}\right\|\left\|w_{2}\right\| \cos \theta
$$

If u_{1} and u_{2} are unit vector, that is
$\left\|u_{1}\right\|=\left\|u_{2}\right\|=1$, then

$$
u_{1} \cdot u_{2}=\cos \theta .
$$

Another angle

$$
w_{1} \cdot w_{2}=\left\|w_{1}\right\|\left\|w_{2}\right\| \cos \theta
$$

If u_{1} and u_{2} are unit vector, that is

$$
\left\|u_{1}\right\|=\left\|u_{2}\right\|=1 \text {, then }
$$

$$
u_{1} \cdot u_{2}=\cos \theta .
$$

Thus, another way to use the formula is to normalize the vectors first

$$
u_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}, \quad u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}
$$

Matrix

Matrix is a collection of vectors

- Data is stored in a matrix.
- Cov/Corr of ≥ 2 variables is a matrix.

Matrix

Matrix is a collection of vectors

$$
A=\left(\begin{array}{cccc}
\uparrow & \uparrow & & \\
v_{1} & v_{2} & \ldots & v_{m} \\
\downarrow & \downarrow & & \\
\downarrow & \downarrow & &
\end{array}\right)
$$

This is an $n \times m$ matrix (or $A \in \mathbb{R}^{n \times m}$).

Matrix \& vectors

Matrix transforms vectors

In other words, a span of $v_{1}, v_{2}, \ldots, v_{m}$.

Matrix \& vectors

$$
\left(\begin{array}{cc}
1 & 1 \\
3 & -2 \\
1 & 3
\end{array}\right)\binom{a_{1}}{a_{2}}
$$

Matrix \& vectors

$$
\left(\begin{array}{ll}
4 & 8 \\
3 & 6
\end{array}\right)\binom{a_{1}}{a_{2}}
$$

Example

$$
A=\left(\begin{array}{ccc}
2 & 0 & 3 \\
1 & -1 & 0 \\
0 & 3 & 10
\end{array}\right), u=(1,2,-1) .
$$

Matrix \& Matrix

Suppose that A and B are matrices.

$$
\begin{aligned}
A B & =A\left(\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
u_{1} & u_{2} & \ldots & u_{p} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
A u_{1} & A u_{2} & \ldots & A u_{p} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right)
\end{aligned}
$$

Example

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Matrix arithmetic

Sometimes we want to solve matrix equations. For example,

$$
\begin{aligned}
& Y=X \boldsymbol{\beta} \\
& \boldsymbol{\beta}=X^{-1} Y
\end{aligned}
$$

but what is X^{-1} in the world of matrices?

Identity

In the world of numbers, the inverse x^{-1} of x is defined such that

$$
x \cdot x^{-1}=1
$$

What is 1 in the world of matrices?

Identity matrix

Define I_{n} as

$$
I_{n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Then for any $n \times m$ matrix A,

$$
A I_{m}=I_{n} A=A .
$$

Identity matrices

$$
\begin{aligned}
I_{2} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
I_{3} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
I_{4} & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Inverse matrix

Let A be a square matrix (an $n \times n$ matrix) then the inverse of A is A^{-1} such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

Inverse matrix

Let A be a square matrix (an $n \times n$ matrix) then the inverse of A is A^{-1} such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

Why A has to be square? Try the following example: $A=\binom{1}{0}$

Transpose

The tranpose of a matrix flips its elements over the diagonal.
For example:

$$
\begin{aligned}
& \text { If } \quad A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \\
& \text { then } \quad A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
\end{aligned}
$$

Properties

Any matrices A, B and C satisfy:

$$
\begin{align*}
A(B+C) & =A B+A C \tag{1}\\
A(B C) & =(A B) C \tag{2}\\
(A+B)^{T} & =A^{T}+B^{T} \tag{3}\\
(A B)^{T} & =B^{T} A^{T} \tag{4}\\
(A B)^{-1} & =B^{-1} A^{-1} \tag{5}
\end{align*}
$$

However, $A B \neq B A$.

Symmetric matrices

A matrix A is symmetric if $A^{T}=A$.
For example:

$$
\left(\begin{array}{ccc}
1 & 2 & 30 \\
2 & 3 & 16 \\
30 & 16 & 5
\end{array}\right)
$$

is symmetric.
Covariance and correlation matrices are symmetric.

Rotation matrices

In \mathbb{R}^{2} the following matrix rotates any vector by an angle θ counterclockwise.

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Rotation matrices

In \mathbb{R}^{2} the following matrix rotates any vector by an angle θ counterclockwise.

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

$\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{x_{1}}{x_{2}}=$

Example

Pick $\theta=\frac{\pi}{2}=90^{\circ}$

