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Dimensionality reduction
Why remove some of the features?
• Save storage and computation time.

• Reduce some redundancy in the data.

• Remove noises in the data.
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MNIST example

First 300 pixels with the lowest variance are
undesirable features.
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A simple case

Suppose we want to reduce from 2D data to 1D.
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A simple case

Suppose we want to reduce from 2D data to 1D.

Make projections on this line.
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From 2D to 1D

The red line becomes the 1D axis.
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Vector Projection

If we want to project a vector v in a direction of a
unit vector u,

then the length of projection is u · v.
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Examples

What is the projection of v =

(
1
2

)
in the

following directions?
• The x axis.

• The direction of u =

(
−1
1

)
.
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Comparison between two directions

Which red line is better?
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the
technique of finding directions (principal

components) that capture the variance of the
data

The first principal component is the direction of
the maximum variance
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Sample Covariance
Suppose we have a data table:

X1 X2 X3 ... Xd

1 a1 b1
2 a2 b2
3 a3 b3
... ... ...
n an bn

The Sample Covariance betweenX1 andX2 is

Cov(X1, X2) =
1

n− 1

[
X1 ·X2 −X1X2

]
.
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Sample Covariance

Positive correlation Negative correlation No correlation
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Covariance matrix
LetX1, X2, . . . , Xd be the variable vectors.

The covariance matrix is a d×dmatrix defined by

Σ =



Var(X1) Cov(X1, X2) . . . Cov(X1, Xd)

Cov(X2, X1) Var(X2) . . . Cov(X2, Xd)

... ... . . . ...

Cov(Xd, X1) Cov(Xd, X2) . . . Var(Xd)
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Example

Data with two variables:
D = {(0, 1), (2, 3), (5, 0), (1, 8)}.

Σ =
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Orthogonal vectors

14



A basic of orthogonal unit vectors

Suppose we have d orthogonal unit vectors in Rd:

u1, u2, . . . , ud

We can write any vector u ∈ Rd as a linear
combination of u1. . . . , ud:

u = a1u1 + a2u2 + . . .+ adud =
d∑

i=1

aiui
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Example

u1

u2

v (0,3)

u1 = [0.6, 0.8] u2 = [−0.8, 0.6]
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Next slide is the main result from linear
algebra that we will use for PCA...
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Spectral decomposition
Fact: The covariance matrix Σ can be decomposed as

Σ =


x x x
u1 u2 . . . udy y y


︸ ︷︷ ︸

UT


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λd


︸ ︷︷ ︸

Λ


←− u1 −→
←− u2 −→

...
←− ud −→


︸ ︷︷ ︸

U

where
• λ1 ≥ λ2 ≥ . . . ≥ λd are the eigenvalues.

• u1, u2, . . . , ud are the eigenvectors of length d.

• u1, u2, . . . , ud are orthogonal unit vectors .
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Eigenvectors
Fact: The covariance matrix Σ can be decomposed as

Σ =


x x x
u1 u2 . . . udy y y


︸ ︷︷ ︸

UT


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λd


︸ ︷︷ ︸

Λ


←− u1 −→
←− u2 −→

...
←− ud −→


︸ ︷︷ ︸

U

• The eigenvectors u1 is the direction with maximum
variance

• The maximum variance is λ1
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Spectral decomposition

Σ =


x x x
u1 u2 . . . udy y y



λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λd



←− u1 −→
←− u2 −→

...
←− ud −→


• The second best direction is u2 with the second

largest variance λ2.

• The third best direction is u3 with the third largest
variance λ3.

• and so on...
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Principal component analysis

Let u ∈ Rd be a data point.

Principal axes (k < d):

u1, u2, . . . , uk

The PCA of u is

(u · u1, u · u2, . . . , u · uk) ∈ Rk.
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PCA of iris flowers

λ1 = 4.23, λ2 = 0.24
u1 = (0.36,−0.08, 0.86, 0.36)
u2 = (0.66, 0.73,−0.17,−0.07)

Three species of iris

• Setosa

• Versicolor

• Virginica

Four variables

• x1: sepal length

• x2: sepal width

• x3: petal length

• x4: petal width
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Reconstruction
Eigenvectors: u1, u2, . . . , ud.
• k principal axes: u1, u2, . . . , uk ∈ Rd.

• In these axes, the coordinate of the PCA of a
point u is

(u · u1, u · u2, . . . , u · uk) ∈ Rk.

Reverse this point back to the original
coordinate using

(u · u1)u1 + (u · u2)u2 + . . .+ (u · uk)uk ∈ Rd.
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Reconstruction

The reconstructions are the black points on the
red line. We see that there is some information

loss in the process.
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Reconstruction of MNIST
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