Principal component analysis

Dimensionality reduction

Why remove some of the features?

- Save storage and computation time.
- Reduce some redundancy in the data.
- Remove noises in the data.

MNIST example

First 300 pixels with the lowest variance are undesirable features.

A simple case

Suppose we want to reduce from 2D data to 1D.

A simple case

Suppose we want to reduce from 2D data to 1D.

Make projections on this line.

From 2D to 1D

The red line becomes the 1D axis.

Vector Projection

If we want to project a vector v in a direction of a unit vector u,

then the length of projection is $u \cdot v$.

Examples

What is the projection of $v=\binom{1}{2}$ in the following directions?

- The x axis.
- The direction of $u=\binom{-1}{1}$.

Comparison between two directions

Which red line is better?

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the technique of finding directions (principal components) that capture the variance of the data

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the technique of finding directions (principal components) that capture the variance of the data

The first principal component is the direction of the maximum variance

Sample Covariance

Suppose we have a data table:

	X_{1}	X_{2}	X_{3}	\ldots	X_{d}
1	a_{1}	b_{1}			
2	a_{2}	b_{2}			
3	a_{3}	b_{3}			
\vdots	\vdots		\vdots		
n	a_{n}	b_{n}			

The Sample Covariance between X_{1} and X_{2} is

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\frac{1}{n-1}\left[X_{1} \cdot X_{2}-\bar{X}_{1} \bar{X}_{2}\right] .
$$

Sample Covariance

Positive correlation Negative correlation No correlation

Covariance matrix

Let $X_{1}, X_{2}, \ldots, X_{d}$ be the variable vectors.
The covariance matrix is a $d \times d$ matrix defined by

$$
\Sigma=\left[\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{d}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{2}, X_{d}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{d}, X_{1}\right) & \operatorname{Cov}\left(X_{d}, X_{2}\right) & \ldots & \operatorname{Var}\left(X_{d}\right)
\end{array}\right]
$$

Example

Data with two variables:
$D=\{(0,1),(2,3),(5,0),(1,8)\}$.
$\Sigma=$

Orthogonal vectors

A basic of orthogonal unit vectors

Suppose we have d orthogonal unit vectors in \mathbb{R}^{d} :

$$
u_{1}, u_{2}, \ldots, u_{d}
$$

We can write any vector $u \in \mathbb{R}^{d}$ as a linear combination of $u_{1} \ldots, u_{d}$:

$$
u=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{d} u_{d}=\sum_{i=1}^{d} a_{i} u_{i}
$$

Example

Next slide is the main result from linear algebra that we will use for PCA...

Spectral decomposition

Fact: The covariance matrix Σ can be decomposed as

where

- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}$ are the eigenvalues.
- $u_{1}, u_{2}, \ldots, u_{d}$ are the eigenvectors of length d.
- $u_{1}, u_{2}, \ldots, u_{d}$ are orthogonal unit vectors .

Eigenvectors

Fact: The covariance matrix Σ can be decomposed as

- The eigenvectors u_{1} is the direction with maximum variance
- The maximum variance is λ_{1}

Spectral decomposition

$$
\Sigma=\left(\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
u_{1} & u_{2} & \ldots & u_{d} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right)\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{d}
\end{array}\right)\left(\begin{array}{ccc}
\longleftarrow & u_{1} & \longrightarrow \\
\longleftarrow & u_{2} & \longrightarrow \\
& \vdots & \\
\longleftarrow & u_{d} & \longrightarrow
\end{array}\right)
$$

- The second best direction is u_{2} with the second largest variance λ_{2}.
- The third best direction is u_{3} with the third largest variance λ_{3}.
- and so on...

Principal component analysis

Let $u \in \mathbb{R}^{d}$ be a data point.
Principal axes $(k<d)$:

$$
u_{1}, u_{2}, \ldots, u_{k}
$$

The PCA of u is

$$
\left(u \cdot u_{1}, u \cdot u_{2}, \ldots, u \cdot u_{k}\right) \in \mathbb{R}^{k}
$$

PCA of iris flowers

$\lambda_{1}=4.23, \quad \lambda_{2}=0.24$
$u_{1}=(0.36,-0.08,0.86,0.36)$
$u_{2}=(0.66,0.73,-0.17,-0.07)$

Three species of iris

- Setosa
- Versicolor
- Virginica

Four variables

- x_{1} : sepal length
- x_{2} : sepal width
- x_{3} : petal length
- x_{4} : petal width

Reconstruction

Eigenvectors: $u_{1}, u_{2}, \ldots, u_{d}$.

- k principal axes: $u_{1}, u_{2}, \ldots, u_{k} \in \mathbb{R}^{d}$.
- In these axes, the coordinate of the PCA of a point u is

$$
\left(u \cdot u_{1}, u \cdot u_{2}, \ldots, u \cdot u_{k}\right) \in \mathbb{R}^{k}
$$

Reconstruction

Eigenvectors: $u_{1}, u_{2}, \ldots, u_{d}$.

- k principal axes: $u_{1}, u_{2}, \ldots, u_{k} \in \mathbb{R}^{d}$.
- In these axes, the coordinate of the PCA of a point u is

$$
\left(u \cdot u_{1}, u \cdot u_{2}, \ldots, u \cdot u_{k}\right) \in \mathbb{R}^{k}
$$

Reverse this point back to the original coordinate using

$$
\left(u \cdot u_{1}\right) u_{1}+\left(u \cdot u_{2}\right) u_{2}+\ldots+\left(u \cdot u_{k}\right) u_{k} \in \mathbb{R}^{d}
$$

Reconstruction

The reconstructions are the black points on the red line. We see that there is some information loss in the process.

Reconstruction of MNIST

