Linear Regression

229351

Example: Monthly sales data

Example: $X = \mathsf{TV}$ advertising budgets $Y = \mathsf{sales}$ of a product

Linear Regression

- Quantitative response Y.
- Predictor variable X.

Goal: Study a linear relationship between X and Y:

$$Y \approx \beta_0 + \beta_1 X.$$

Linear Regression

- Quantitative response Y.
- Predictor variable X.

The statistical model is:

$$Y = \beta_0 + \beta_1 X + \epsilon, \qquad \epsilon \sim N(0, \sigma^2)$$

Example: $X = \mathsf{TV}$ advertising budgets $Y = \mathsf{sales}$ of a product

$$sales = \beta_0 + \beta_1 \times TV + \epsilon, \qquad \epsilon \sim N(0, \sigma^2).$$

Example: $X = \mathsf{TV}$ advertising budgets $Y = \mathsf{sales}$ of a product

$$sales = \beta_0 + \beta_1 \times TV + \epsilon, \qquad \epsilon \sim N(0, \sigma^2).$$

Since we do not have all possible sales and TV...

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

where x = an observed value $\hat{y} =$ prediction.

• Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

• Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

• Predictions: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

• Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

• Predictions: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

• Errors:
$$e_i = |y_i - \hat{y}_i|$$

We want to minimize the residual sum of squares

RSS =
$$e_1^2 + e_2^2 + \ldots + e_n^2$$

= $(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$.

Residual Sum of Squares (RSS)

$$\mathsf{RSS} = \underbrace{(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2}_{\text{function of } \hat{\beta}_0, \hat{\beta}_1}$$

Least square coefficient estimate

Find $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize $F(\hat{\beta}_0, \hat{\beta}_1) = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$ The solution is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Least square coefficient estimate

Find $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize $F(\hat{\beta}_0, \hat{\beta}_1) = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$ The solution is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Sketch of derivation: take the partial derivatives of F with respect to $\hat{\beta}_0$ and $\hat{\beta}_1$

$$\frac{dF}{d\hat{\beta}_0} = -2\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
$$\frac{dF}{d\hat{\beta}_1} = -2\sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0.$$

Then solve for $\hat{\beta}_0$ and $\hat{\beta}_1$.

Example: Monthly sales data

Example: $X = \mathsf{TV}$ advertising budgets $Y = \mathsf{sales}$ of a product

Interpreting $\hat{\beta}_0$: Without any TV advertising, the comp 7.03 units in sales **on average**.

Interpreting $\hat{\beta}_1$: An additional \$100 spent on TV adver is associated with 4.75 **more** units in sales.

Accuracy of \hat{eta}_0 and \hat{eta}_1

Population model: $Y = \beta_0 + \beta_1 X + \epsilon$ Sample model: $Y = \hat{\beta}_0 + \hat{\beta}_1 X$,

- $\hat{\beta}_0$ and $\hat{\beta}_1$ were computed from a sample, not a population.
- Can we tell anything about β_0 and β_1 from $\hat{\beta}_0$ and $\hat{\beta}_1$?

• 30 generated points from $Y = 2 + 3X + \epsilon$ where $\epsilon \sim N(0, 2)$.

- The blue line is the *least square* line of the population. The red line is the population regression line: Y = 2 + 3X
- The blue line is the *least square* line of the sample.

How can we locate the population regression

Confidence interval

We find the location of β_0 's by making **confidence intervals**:

$$I_0 = [\hat{\beta}_0 - 2 \cdot \mathsf{SE}(\hat{\beta}_0), \hat{\beta}_0 + 2 \cdot \mathsf{SE}(\hat{\beta}_0)],$$

where SE is the **standard error** (next two slides) This interval has 95% chance of containing β_0

Confidence interval

We find the location of β_1 's by making **confidence intervals**:

$$I_1 = [\hat{\beta}_1 - 2 \cdot \mathsf{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \mathsf{SE}(\hat{\beta}_1)],$$

where SE is the standard error (next slide)

This interval has 95% chance of containing β_1

Standard errors

$$I_i = [\hat{\beta}_i - 2 \cdot \mathsf{SE}(\hat{\beta}_i), \hat{\beta}_i + 2 \cdot \mathsf{SE}(\hat{\beta}_i)], \quad i = 0, 1$$

$$SE(\hat{\beta}_{0})^{2} = \sigma^{2} \left[\frac{1}{n} + \frac{\bar{x}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right]$$
$$SE(\hat{\beta}_{1})^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}.$$

There is **95%** probability that I_i contains β_i .

Residual standard error

However, most of the time we don't know σ !

Replace σ^2 by the residual standard error (RSE)

$$\mathsf{RSE} = \sqrt{\frac{\mathsf{RSS}}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}}.$$

which satisfies $\mathbf{E}(RSE^2) = \sigma^2$.

Estimates of standard errors

$$I_i = [\hat{\beta}_i - 2 \cdot \widehat{\mathsf{SE}}(\hat{\beta}_i), \hat{\beta}_i + 2 \cdot \widehat{\mathsf{SE}}(\hat{\beta}_i)], \quad i = 0, 1$$

$$\widehat{\mathsf{SE}}(\hat{\beta}_0)^2 = \mathsf{RSE}^2 \left[\frac{1}{n} + \frac{\bar{x}}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$
$$\widehat{\mathsf{SE}}(\hat{\beta}_1)^2 = \frac{\mathsf{RSE}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

There is **95%** probability that I_i contains β_i .

Sales vs TV ads regression

The 95% confidence interval of β_0 is

$$I_0 = [6.135, 7.935]$$

What this means is that

• Without any advertising, the sales will fall somewhere between 6.135 and 7.935 units.

Sales vs TV ads regression

The 95% confidence interval of β_1 is

 $I_1 = [0.042, 0.053]$

What this means is that

• For each \$1 additional TV advertising, there will be an increase in sale between 0.042 and 0.053 units on average.

Hypothesis testing

Main question: Is there **actual** relationship between *X* and *Y*?

Hypothesis test

 H_0 : $\beta_1 = 0$ (no relationship) H_1 : $\beta_1 \neq 0$ (some relationship)

Then under some rule($\hat{\beta}_1$), we decide to *accept* or *reject* H_0 .

Hypothesis test

 H_0 : $\beta_1 = 0$ (no relationship) H_1 : $\beta_1 \neq 0$ (some relationship)

Then under some rule($\hat{\beta}_1$), we decide to *accept* or *reject* H_0 .

How can we make a decision? Look at the *t-statistic*.

$$t = \frac{\hat{\beta}_1 - 0}{\mathsf{SE}(\hat{\beta}_1)}.$$

If |t| is sufficiently large then we will reject H_0 .

- *p*-value is the probability that T > |t|.
- If the *p*-value is too small, we will reject H_0 .
- Typical *p*-value are 5% and 1% which corresponds to |t| = 2 and |t| = 2.75, respectively.

Accuracy of the model

1. Residual standard error

$$\mathsf{RSE} = \sqrt{\frac{\mathsf{RSS}}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}},$$

- In sales vs TV regression is, RSE = 3.26.
- Any prediction from the **true regression line** $Y = \beta_0 + \beta_1 X$ is off from the actual sales by 3, 260 units on average.

Accuracy of the model

2. R^2 statistic

$$R^2 = \frac{\mathsf{TSS} - \mathsf{RSS}}{\mathsf{TSS}}$$

- where TSS = $\sum_{i=1}^{n} (y_i \bar{y})^2$ is the total sum of squares.
 - TSS/n is the "variance" of Y.

• RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• RSS/*n* is the "variance" not explained by the regression.

R^2 statistic

$$R^2 = \frac{\mathsf{TSS} - \mathsf{RSS}}{\mathsf{TSS}}$$

R^2 statistic

$$R^2 = \frac{\mathsf{TSS} - \mathsf{RSS}}{\mathsf{TSS}}$$

R^2 is the proportion of variance of yexplained by the regression

 $R^2 = 0.612$, so about two-thirds of the variance in Y is explained by a regression in **TV**.