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Example: Monthly sales data

Example: X = TV advertising budgets
Y = sales of a product
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Linear Regression

• Quantitative response Y .

• Predictor variableX .

Goal: Study a linear relationship between X and
Y :

Y ≈ β0 + β1X.
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Linear Regression

• Quantitative response Y .

• Predictor variableX .

The statistical model is:

Y = β0 + β1X + ϵ, ϵ ∼ N(0, σ2)
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Example: X = TV advertising budgets
Y = sales of a product

sales = β0 + β1 × TV + ϵ, ϵ ∼ N(0, σ2).

Since we do not have all possible sales and TV ...

ŷ = β̂0 + β̂1x,

where x = an observed value
ŷ = prediction.
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• Data: (x1, y1), (x2, y2), . . . , (xn, yn)

• Predictions: ŷi = β̂0 + β̂1xi

• Errors: ei = |yi − ŷi|

6



• Data: (x1, y1), (x2, y2), . . . , (xn, yn)

• Predictions: ŷi = β̂0 + β̂1xi
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We want to minimize the residual sum of squares

RSS = e21 + e22 + . . .+ e2n

= (y1 − β̂0 − β̂1x1)
2 + . . .+ (yn − β̂0 − β̂1xn)

2.
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Residual Sum of Squares (RSS)

RSS = (y1 − β̂0 − β̂1x1)
2 + (y2 − β̂0 − β̂1x2)

2 + . . .+ (yn − β̂0 − β̂1xn)
2︸ ︷︷ ︸

function of β̂0,β̂1

.
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Least square coefficient estimate
Find β̂0 and β̂1 that minimize
F (β̂0, β̂1) = (y1−β̂0−β̂1x1)

2+(y2−β̂0−β̂1x2)
2+. . .+(yn−β̂0−β̂1xn)

2.

The solution is

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄,

Sketch of derivation: take the partial derivatives of F with respect to β̂0

and β̂1

dF

dβ̂0

= −2

n∑
i=1

(yi − β̂0 − β̂1xi) = 0

dF

dβ̂1

= −2

n∑
i=1

xi(yi − β̂0 − β̂1xi) = 0,

Then solve for β̂0 and β̂1.
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Example: Monthly sales data

Example: X = TV advertising budgets
Y = sales of a product
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β̂0 = 7.03, β̂1 = 0.0475.

Interpreting β̂0: Without any TV advertising, the company makes
7.03 units in sales on average.
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β̂0 = 7.03, β̂1 = 0.0475.

Interpreting β̂1: An additional $100 spent on TV advertising
is associated with 4.75more units in sales.
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Accuracy of β̂0 and β̂1

Population model: Y = β0 + β1X + ϵ

Sample model: Y = β̂0 + β̂1X,

• β̂0 and β̂1 were computed from a sample, not
a population.

• Can we tell anything about β0 and β1 from β̂0
and β̂1?
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• 30 generated points from Y = 2 + 3X + ϵ where
ϵ ∼ N(0, 2).
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• The blue line is the least square line of the
population.The red line is the population regression
line: Y = 2 + 3X

• The blue line is the least square line of the sample.
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?

?

How can we locate the population regression
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Confidence interval
We find the location of β0’s by making
confidence intervals:

I0 = [β̂0 − 2 · SE(β̂0), β̂0 + 2 · SE(β̂0)],

where SE is the standard error (next two slides)

This interval has 95% chance of containing β0
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Confidence interval
We find the location of β1’s by making
confidence intervals:

I1 = [β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)],

where SE is the standard error (next slide)

This interval has 95% chance of containing β1
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Standard errors

Ii = [β̂i − 2 · SE(β̂i), β̂i + 2 · SE(β̂i)], i = 0, 1

SE(β̂0)2 = σ2

[
1

n
+

x̄∑n
i=1(xi − x̄)2

]
SE(β̂1)2 =

σ2∑n
i=1(xi − x̄)2

.

There is 95% probability that Ii contains βi.
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Residual standard error

However, most of the time we don’t know σ!

Replace σ2 by the residual standard error (RSE)

RSE =

√
RSS
n− 2

=

√∑n
i=1(yi − ŷi)2

n− 2
,

which satisfies E(RSE2) = σ2.
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Estimates of standard errors

Ii = [β̂i − 2 · ŜE(β̂i), β̂i + 2 · ŜE(β̂i)], i = 0, 1

ŜE(β̂0)2 = RSE2

[
1

n
+

x̄∑n
i=1(xi − x̄)2

]
ŜE(β̂1)2 =

RSE2∑n
i=1(xi − x̄)2

.

There is 95% probability that Ii contains βi.
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Sales vs TV ads regression

The 95% confidence interval of β0 is

I0 = [6.135, 7.935]

What this means is that
• Without any advertising, the sales will fall
somewhere between 6.135 and 7.935 units.
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Sales vs TV ads regression

The 95% confidence interval of β1 is

I1 = [0.042, 0.053]

What this means is that
• For each $1 additional TV advertising, there
will be an increase in sale between 0.042 and
0.053 units on average.
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Hypothesis testing

Main question: Is there actual relationship
betweenX and Y ?

22



Hypothesis test

H0 : β1 = 0 (no relationship)
H1 : β1 ̸= 0 (some relationship)

Then under some rule(β̂1), we decide to accept
or reject H0.

How can we make a decision? Look at the
t-statistic.

t =
β̂1 − 0

SE(β̂1)
.

If |t| is sufficiently large then we will reject H0.
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t-statistic

T

• p-value is the probability that T > |t|.

• If the p-value is too small, we will reject H0.

• Typical p-value are 5% and 1% which
corresponds to |t| = 2 and |t| = 2.75,
respectively.
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salse vs TV regression

T

β̂i SE(β̂i) t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001
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Accuracy of the model

1. Residual standard error

RSE =

√
RSS
n− 2

=

√∑n
i=1(yi − ŷi)2

n− 2
,

• In sales vs TV regression is, RSE = 3.26.

• Any prediction from the true regression line
Y = β0 + β1X is off from the actual sales by
3, 260 units on average.
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Accuracy of the model

2. R2 statistic

R2 =
TSS− RSS

TSS

• where TSS =
∑n

i=1(yi − ȳ)2 is the total sum
of squares.

• TSS/n is the “variance” of Y .

• RSS =
∑n

i=1(yi − ŷi)
2

• RSS/n is the “variance” not explained by the
regression.
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R2 statistic

R2 =
TSS− RSS

TSS
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R2 statistic

R2 =
TSS− RSS

TSS

R2 is the proportion of variance of y
explained by the regression
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R2 = 0.612, so about two-thirds of the variance in
Y is explained by a regression in TV.
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