Linear Regression

229351

Example: Monthly sales data

Example: $X=$ TV advertising budgets
$Y=$ sales of a product

Linear Regression

- Quantitative response Y.
- Predictor variable X.

Goal: Study a linear relationship between X and Y :

$$
Y \approx \beta_{0}+\beta_{1} X
$$

Linear Regression

- Quantitative response Y.
- Predictor variable X.

The statistical model is:

$$
Y=\beta_{0}+\beta_{1} X+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

Example: $X=$ TV advertising budgets $Y=$ sales of a product

$$
\text { sales }=\beta_{0}+\beta_{1} \times T V+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right) .
$$

Example: $X=$ TV advertising budgets $Y=$ sales of a product

$$
\text { sales }=\beta_{0}+\beta_{1} \times T V+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

Since we do not have all possible sales and $T V \ldots$

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

where $x=$ an observed value
$\hat{y}=$ prediction.

- Data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$

- Data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Predictions: $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$

- Data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Predictions: $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$
- Errors: $e_{i}=\left|y_{i}-\hat{y}_{i}\right|$

We want to minimize the residual sum of squares
$\mathrm{RSS}=e_{1}^{2}+e_{2}^{2}+\ldots+e_{n}^{2}$

$$
=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\ldots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2} .
$$

Residual Sum of Squares (RSS)

$$
\mathrm{RSS}=\underbrace{\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\left(y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}\right)^{2}+\ldots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}\right.}_{\text {function of } \hat{\beta}_{0}, \hat{\beta}_{1}}
$$

Least square coefficient estimate

Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that minimize
$F\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\left(y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}\right)^{2}+\ldots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2}$
The solution is

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x},
\end{aligned}
$$

Least square coefficient estimate

Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that minimize
$F\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\left(y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}\right)^{2}+\ldots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2}$
The solution is

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x},
\end{aligned}
$$

Sketch of derivation: take the partial derivatives of F with respect to $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$

$$
\begin{aligned}
& \frac{d F}{d \hat{\beta}_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
& \frac{d F}{d \hat{\beta}_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0,
\end{aligned}
$$

Then solve for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

Example: Monthly sales data

Example: $X=$ TV advertising budgets
$Y=$ sales of a product

Interpreting $\hat{\beta}_{0}$: Without any TV advertising, the comp 7.03 units in sales on average.

Interpreting $\hat{\beta}_{1}$: An additional $\$ 100$ spent on TV adver is associated with 4.75 more units in sales.

Accuracy of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$

$$
\begin{aligned}
\text { Population model: } Y & =\beta_{0}+\beta_{1} X+\epsilon \\
\text { Sample model: } Y & =\hat{\beta}_{0}+\hat{\beta}_{1} X,
\end{aligned}
$$

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ were computed from a sample, not a population.
- Can we tell anything about β_{0} and β_{1} from $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$?

- 30 generated points from $Y=2+3 X+\epsilon$ where $\epsilon \sim N(0,2)$.

- The blue line is the least square line of the population. The red line is the population regression line: $Y=2+3 X$
- The blue line is the least square line of the sample.

How can we locate the population regression

Confidence interval

We find the location of β_{0} 's by making confidence intervals:

$$
I_{0}=\left[\hat{\beta}_{0}-2 \cdot \operatorname{SE}\left(\hat{\beta}_{0}\right), \hat{\beta}_{0}+2 \cdot \operatorname{SE}\left(\hat{\beta}_{0}\right)\right]
$$

where SE is the standard error (next two slides)
This interval has 95% chance of containing β_{0}

Confidence interval

We find the location of β_{1} 's by making confidence intervals:

$$
I_{1}=\left[\hat{\beta}_{1}-2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right)\right],
$$

where SE is the standard error (next slide)
This interval has 95% chance of containing β_{1}

Standard errors

$$
\begin{gathered}
I_{i}=\left[\hat{\beta}_{i}-2 \cdot \operatorname{SE}\left(\hat{\beta}_{i}\right), \hat{\beta}_{i}+2 \cdot \operatorname{SE}\left(\hat{\beta}_{i}\right)\right], \quad i=0,1 \\
\operatorname{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right] \\
\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
\end{gathered}
$$

There is $\mathbf{9 5 \%}$ probability that I_{i} contains β_{i}.

Residual standard error

However, most of the time we don't know σ !
Replace σ^{2} by the residual standard error (RSE)

$$
\mathrm{RSE}=\sqrt{\frac{\mathrm{RSS}}{n-2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}
$$

which satisfies $\mathbf{E}\left(\mathrm{RSE}^{2}\right)=\sigma^{2}$.

Estimates of standard errors

$$
\begin{aligned}
I_{i}= & {\left[\hat{\beta}_{i}-2 \cdot \widehat{\operatorname{SE}}\left(\hat{\beta}_{i}\right), \hat{\beta}_{i}+2 \cdot \widehat{\operatorname{SE}}\left(\hat{\beta}_{i}\right)\right], \quad i=0,1 } \\
& \widehat{\operatorname{SE}}\left(\hat{\beta}_{0}\right)^{2}=\operatorname{RSE}^{2}\left[\frac{1}{n}+\frac{\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right] \\
& \widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)^{2}=\frac{\operatorname{RSE}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
\end{aligned}
$$

There is $\mathbf{9 5 \%}$ probability that I_{i} contains β_{i}.

Sales vs TV ads regression

The 95% confidence interval of β_{0} is

$$
I_{0}=[6.135,7.935]
$$

What this means is that

- Without any advertising, the sales will fall somewhere between 6.135 and 7.935 units.

Sales vs TV ads regression

The 95% confidence interval of β_{1} is

$$
I_{1}=[0.042,0.053]
$$

What this means is that

- For each $\$ 1$ additional TV advertising, there will be an increase in sale between 0.042 and 0.053 units on average.

Hypothesis testing

Main question: Is there actual relationship between X and Y ?

Hypothesis test

$$
\begin{array}{lll}
H_{0}: \beta_{1}=0 & \text { (no relationship) } \\
H_{1}: \beta_{1} \neq 0 & \text { (some relationship) }
\end{array}
$$

Then under some rule $\left(\hat{\beta}_{1}\right)$, we decide to accept or reject H_{0}.

Hypothesis test

$$
\begin{array}{lll}
H_{0}: \beta_{1}=0 & \text { (no relationship) } \\
H_{1}: \beta_{1} \neq 0 & \text { (some relationship) }
\end{array}
$$

Then under some rule $\left(\hat{\beta}_{1}\right)$, we decide to accept or reject H_{0}.

How can we make a decision? Look at the t-statistic.

$$
t=\frac{\hat{\beta}_{1}-0}{\operatorname{SE}\left(\hat{\beta}_{1}\right)}
$$

If $|t|$ is sufficiently large then we will reject H_{0}.

t-statistic

- p-value is the probability that $T>|t|$.
- If the p-value is too small, we will reject H_{0}.
- Typical p-value are 5% and 1% which corresponds to $|t|=2$ and $|t|=2.75$, respectively.

salse vs TV regression

Accuracy of the model

1. Residual standard error

$$
\mathrm{RSE}=\sqrt{\frac{\mathrm{RSS}}{n-2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}
$$

- In sales vs TV regression is, $\mathrm{RSE}=3.26$.
- Any prediction from the true regression line $Y=\beta_{0}+\beta_{1} X$ is off from the actual sales by 3,260 units on average.

Accuracy of the model

2. R^{2} statistic

$$
R^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}
$$

- where TSS $=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ is the total sum of squares.
- TSS $/ n$ is the "variance" of Y.
- $\mathrm{RSS}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$
- RSS/ n is the "variance" not explained by the regression.

R^{2} statistic

$$
R^{2}=\frac{T S S-R S S}{T S S}
$$

R^{2} statistic

$$
R^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}
$$

R^{2} is the proportion of variance of y explained by the regression

$R^{2}=0.612$, so about two-thirds of the variance in Y is explained by a regression in TV.

