Linear Regression
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Example: Monthly sales data

Example: X = TV advertising budgets

Y = sales of a product
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Linear Regression

e Quantitative response Y.

e Predictor variable X.

Goal: Study a linear relationship between X and
Y:
Y = By + 5 X



Linear Regression

e Quantitative response Y.

e Predictor variable X.

The statistical model is:

Y =08 +0X+e  e~N(00%



Example: X = TV advertising budgets
Y = sales of a product

sales = By + B X TV + e, e ~ N(0,0%).



Example: X = TV advertising budgets
Y = sales of a product

sales = By + B X TV + e, e ~ N(0,0%).

Since we do not have all possible sales and T'V ...

~

ﬁ = BO_'—ﬁlx)

where = an observed value
y = prediction.
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Data (1171, yl), (:U27 y2)7 ceey (xTH yn)
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° Data (xl,yl), (1'27 y2)7 SRR (.len, yn)

e Predictions: ¢; = Bo + Blibi
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° Data (xl, yl), (1'27 y2)7 SRR ('CUTU yn)
e Predictions: ¢; = Bo + lez

e Errors: e; = |y; — i
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We want to minimize the residual sum of squares

RSS=el+e3+...+e2
= (1 o — Biz)> + oo+ (o — Bo — Pra)”.



Residual Sum of Squares (RSS)

RSS :\(yl —Bo _Bl$1)2 + (y2 —Bo —B1x2)2 + ...+ (Yn —BO _Bi

function of Bo,51




Least square coefficient estimate
Find /3, and 3, that minimize
F(Bo, Bl) = (yl—Bo—81%)2—1—(?;2—50—51372)2-1—' . -+(yn—30—51$n)2
The solution is
B = 2ima (@i — 2)(yi — 9)
> i (v — )2

60:37_5157




Least square coefficient estimate
Find /3, and 3, that minimize
F(Bo, Bl) = (yl—Bo—51$1)2+(?J2—50—B1I2)2+- . ‘_’_(yn_BO_len)g
The solution is
B = 2ima (@i — 2)(yi — 9)
A > i (v — )2
60 = g - ﬁ1x7

Sketch of derivation: take the partial derivatives of I with respect to Bo
and 3y

dﬁOZ_Q; — Bo — Bri)

Tmz—?;l‘ — Bo — Brx;) =0,

Then solve for 8, and &i.



Example: Monthly sales data

Example: X = TV advertising budgets
Y = sales of a product
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By =7.03, B = 0.0475.

Interpreting 3, Without any TV advertising, the comp
7.03 units in sales on average.
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By =7.03, B, = 0.0475.

Interpreting 3,: An additional $100 spent on TV adver
is associated with 4.75 more units in sales.




Accuracy of 5, and 3,

Population model: Y = 8y + 51X + ¢
Sample model: Y = 3, + 51 X,

e (3, and 3, were computed from a sample, not
a population.

e Can we tell anything about 8, and 8; from §
and (3,7



—— Population regression

S 5
Population

e 30 generated points fromY = 2 + 3X + ¢ where
e~ N(0,2).



—— Population regression °

| — Population regression

. —— Sample least squares

Sample

e The blue line is the least square line of the

population.The red line is the population regression
line: Y =2+ 3X

Population

e The blue line is the least square line of the sample.



—— Sample least squares
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Sample

How can we locate the population regression



Confidence interval

We find the location of Sy's by making
confidence intervals:

Iy = [Bo — 2+ SE(fo), o + 2 - SE(By)],
where SE is the standard error (next two slides)

This interval has 95% chance of containing



Confidence interval

We find the location of 8;'s by making
confidence intervals:

I = [B1 — 2 SE(B1), B + 2 - SE(B1)],
where SE is the standard error (next slide)

This interval has 95% chance of containing 3;



Standard errors

I =13 —2-SE(B), B +2-SE(B)], i=0,1

(- 1)
There is 95% probability that I; contains ;.



Residual standard error

However, most of the time we don’t know ¢!

Replace o2 by the residual standard error (RSE)

RSE—,/ \/Zzly’
n—2 n—2

which satisfies E(RSE?) =




Estimates of standard errors

I =8 —2-SE(B), B +2-SE(B)], i=0,1

— 1 X

2 _ 2|+
SE(5,)? = RSE ~+ ST (o~ 1)
RSE?

> i (@i —x)?
There is 95% probability that I; contains ;.

SE(/h)? =




Sales vs TV ads regression

The 95% confidence interval of 5y is
Iy = [6.135,7.935]

What this means is that

e Without any advertising, the sales will fall
somewhere between 6.135 and 7.935 units.
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Sales vs TV ads regression

The 95% confidence interval of 3 is
I, = [0.042,0.053]

What this means is that

e For each $1 additional TV advertising, there
will be an increase in sale between 0.042 and
0.053 units on average.
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Hypothesis testing

Main question: Is there actual relationship
between X and Y?
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Hypothesis test

Hy : 81 =0 (norelationship)
Hy : p1 #0 (some relationship)

Then under some rule(,;), we decide to accept
or reject Hy.
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Hypothesis test

Hy : 81 =0 (norelationship)
Hy : p1 #0 (some relationship)

Then under some rule(,;), we decide to accept
or reject Hy.

How can we make a decision? Look at the
t-statistic. A
b B1—0
SE(51)

If |¢| is sufficiently large then we will reject Hy,.
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t-statistic

T
e p-value is the probability that 7" > |¢|.

e |f the p-value is too small, we will reject Hy.

e Typical p-value are 5% and 1% which
corresponds to |t| = 2 and [t| = 2.75,
respectively.
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salse vs TV regression

B; SE(B;) t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001
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Accuracy of the model

1. Residual standard error

Zzlyl
e

e Insales vs TV regressionis, RSE = 3.26.

e Any prediction from the true regression line
Y = 5y + (1 X is off from the actual sales by
3,260 units on average.
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Accuracy of the model

2. R? statistic

1TSS — RSS
2 _
= TSS

e where TSS = Y7 (y; — §)? is the total sum
of squares.
® TSS/n is the “variance” of Y.

® RSS =371 (yi — 9:)°
® RSS/n is the “variance” not explained by the
regression.
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R? statistic

R2

_ TSS—RSS

TSS
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R? statistic

1TSS — RSS
2 _
= TSS

R? is the proportion of variance of y
explained by the regression
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R? = 0.612, so about two-thirds of the variance in
Y is explained by a regression in TV.
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