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Credit balance data
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Predictor with two levels

Find the difference in credit card balance (yi)
betweenmale and female (xi).

xi =

{
0 if ith person is male.
1 if ith person is female.

yi = β0 + β1xi + ϵi
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Estimates of coefficients

β̂i SE(β̂i) t-statistic p-value
Intercept 509.80 33.13 15.389 <0.0001
gender(Female) 19.73 46.05 0.429 0.6690

ŷi = 509.80 + 19.73xi.

Main takeaway:

1. Male has credit card debt of 509.80 on average.

2. Female has credit card debt of 509.80+19.73 = 529.53 on
average.

3. The difference in credit card debt is β̂1 = 19.73 on average.

Question: Can we conclude that females have more
credit debt on average than males?
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Predictor with more than two levels

Find the difference in credit card balance (yi)
between Asian, Caucasian and Black.

yi =


β0 + ϵi if ith person is Black.
β0 + β1 + ϵi if ith person is Asian.
β0 + β2 + ϵi if ith person is Caucasian.
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Predictor with more than two levels

Create two dummy variables xi1 and xi2 :

xi1 =

{
1 if ith person is Asian.
0 if ith person is not Asian.

xi2 =

{
1 if ith person is Caucasian.
0 if ith person is not Caucasian.

Using xi1 and xi2, the regression can be written as

yi = β0 + β1xi1 + β2xi2 + ϵi
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Estimates of coefficients

β̂i SE(β̂i) t-statistic p-value
Intercept 531.00 46.32 11.464 <0.0001
ethnicity (Asian) -18.69 65.02 -0.287 0.7740
ethnicity (Caucasian) -12.50 56.68 -0.221 0.8260

Main takeaway: On average,

1. Black has credit debt of 531.00 .

2. Asian has 18.69 less debt than the Black.

3. Caucasian has 12.50 less debt than the Black.

4. Asian has less debt than Caucasian.

Question: How can we decide if there is any difference in
credit card balance between the ethnicities?
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Linear model diagnosis
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Our model

Recall the linear regression model on n data points:

y1 = β0 + β1x11 + . . .+ ϵ1

y2 = β0 + β1x21 + . . .+ ϵ2
...

yn = β0 + β1xn1 + . . .+ ϵn

In this model, we assume that

1. ϵ1, ϵ2, . . . , ϵn are independent.
2. ϵi ∼ N(0, σ2). Specifically, they share the same

variance σ2.
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1. If ϵ1, ϵ2, . . . , ϵn are not independent

Then, all tests in the previous lecture are invalid:

(TSS− RSS)/p
RSS/(n− p− 1)

β̂i

SE(β̂)
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2. If ϵ1, . . . , ϵn do not share the same variance

There is no closed-form formula for Cov(β̂)
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But how can we check these assumptions?

yi = β0 + β1xi1 + . . .+ βpxip + ϵi

ŷi = β̂0 + β̂1xi1 + . . .+ βpxip

≈ β0 + β1xi1 + . . .+ βpxip

We will check if the residuals:

residual of the i-th point = yi − ŷi ≈ ϵi

satisfy all these assumptions
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satisfy all these assumptions

12



But how can we check these assumptions?

yi = β0 + β1xi1 + . . .+ βpxip + ϵi
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satisfy all these assumptions

12



But how can we check these assumptions?

yi = β0 + β1xi1 + . . .+ βpxip + ϵi
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1. Non-linearity of the data
• Maybe the relationship between the predictors and the
response is non-linear.
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Residual plot
• Plot between the fitted values ŷi and the residuals
yi − ŷi.
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Non-linear regression
Try a polynomial function of the horsepower:

mpg = β0 + β1 × horsepower+ β2 × horsepower2 + ϵ.
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Estimates of coefficients

β̂i SE(β̂i) t-statistic p-value
Intercept 56.9001 1.8004 31.6 <0.0001
horsepower -0.4662 0.0311 -15.0 <0.0001
horsepower2 -0.0012 0.0001 10.1 <0.0001

Two things indicate that the quadratic fit is better:
• The p-value of horsepower2 is significant.

• The R2 of this model is 0.688 compared to 0.606 of the
linear model.
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Residual plot of non-linear regression

The pattern disappears
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2. Correlation of error terms

ρ = corr(ϵi−1, ϵi)
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Durbin-Watson test

used to test if there is any correlation in the error terms

H0 :There is no correlation among the residuals
H1 :The residuals are autocorrelated

The test statistic is

d =
n∑

i=2

(ei − ei−1)
2 /

n∑
i=1

e2i
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Procedure: Choose a significance level α, then look up the
value of dL and dU

• RejectH0 if d < dL

• Do not rejectH0 if d > dU

• Test inconclusive if dL < d < dU
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3. Non-constant variance of error terms
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• The variance increases as the fitted value increases.

• Try transformation Y → log(Y ) or Y →
√
Y before

fitting the model.
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4. Outliers

A single point can heavily influence the RSE and R2 of the model.
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Improvement 29% 11%
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5. High leverage points

• High leverage point is a point with an unusual value of
xi.

• Detect high leverage points using the leverage
statistic.
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6. Collinearity

• collinearity problem happens when two predictors
are highly correlated to each other.

• Highly correlated variables cause problems when
fitting the model.
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6. Collinearity

Example: Suppose we have data (xi, yi, zi) from the true
model:

y = 2x+ 3z + ϵ

and assume that z = x.

Fitted model can be:

ŷi = 2xi + 3zi

or ŷi = 1xi + 4zi

ŷi = 5xi

Fitting algorithm does not know which is the true model!
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or ŷi = 1xi + 4zi
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Credit balance data
Detect collinearity using correlation matrix. Remove a
variable if the correlation is close to −1 or 1.
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Multicollinearity

Multicollinearity happens when a predictor is a linear
combination of other predictors.

Example: Predictors xi, zi and wi where xi = zi + 2wi.

Cannot be detected with correlation matrix. Instead, we
use variance inflation factor

V IF (β̂i) =
1

1−R2
Xi|X−i

,

where R2
Xi|X−i

is the R2 from a regression of Xi onto all
other predictors.
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Variance inflation factor

V IF (β̂i) =
1

1−R2
Xi|X−i

.

[High multicol. in Xi]→ [R2
Xi|X−i

is close to 1]→ [high
V IF (β̂i)]

General rule: There is multicollinearity if VIF is higher than
5 or 10

Solution: Drop the variable (in this case, Xi).
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