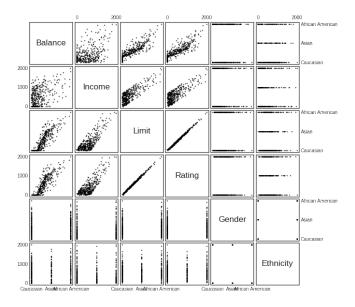
Linear Regression 3

Credit balance data



Predictor with two levels

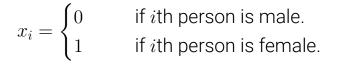
Find the difference in credit card balance (y_i) between **male** and **female** (x_i) .

 $x_i = \begin{cases} 0 & \text{if } i \text{th person is male.} \\ 1 & \text{if } i \text{th person is female.} \end{cases}$

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Predictor with two levels

Find the difference in credit card balance (y_i) between **male** and **female** (x_i) .



$$y_i = \begin{cases} \beta_0 + \epsilon_i \\ \beta_0 + \beta_1 + \epsilon_i \end{cases}$$

if *i*th person is male. if *i*th person is female.

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{\beta}_i)$	t-statistic	<i>p</i> -value
Intercept	509.80	33.13	15.389	< 0.0001
gender(Female)	19.73	46.05	0.429	0.6690

 $\hat{y}_i = 509.80 + 19.73x_i.$

Main takeaway:

- 1. Male has credit card debt of 509.80 on average.
- 2. Female has credit card debt of 509.80+19.73 = 529.53 on average.
- 3. The difference in credit card debt is $\hat{\beta}_1 = 19.73$ on average.

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{\beta}_i)$	t-statistic	<i>p</i> -value
Intercept	509.80	33.13	15.389	< 0.0001
gender(Female)	19.73	46.05	0.429	0.6690

 $\hat{y}_i = 509.80 + 19.73x_i.$

Main takeaway:

- 1. Male has credit card debt of 509.80 on average.
- 2. Female has credit card debt of 509.80+19.73 = 529.53 on average.
- 3. The difference in credit card debt is $\hat{\beta}_1 = 19.73$ on average.

Question: Can we conclude that females have more credit debt on average than males?

Predictor with more than two levels

Find the difference in credit card balance (y_i) between **Asian**, **Caucasian** and **Black**.

$$y_i = \begin{cases} \beta_0 + \epsilon_i & \text{if } i \text{th person is Black.} \\ \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian.} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian.} \end{cases}$$

Predictor with more than two levels

Create two **dummy variables** x_{i1} and x_{i2} :

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person is Asian.} \\ 0 & \text{if } i \text{th person is not Asian.} \end{cases}$$
$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian.} \\ 0 & \text{if } i \text{th person is not Caucasian.} \end{cases}$$

Using x_{i1} and x_{i2} , the regression can be written as

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{\beta}_i)$	t-statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	<0.0001
ethnicity (Asian)	-18.69	65.02	-0.287	0.7740
ethnicity (Caucasian)	-12.50	56.68	-0.221	0.8260

Main takeaway: On average,

- 1. Black has credit debt of 531.00.
- 2. Asian has 18.69 less debt than the Black.
- 3. Caucasian has 12.50 less debt than the Black.
- 4. Asian has ______ less debt than Caucasian.

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{\beta}_i)$	t-statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	<0.0001
ethnicity (Asian)	-18.69	65.02	-0.287	0.7740
ethnicity (Caucasian)	-12.50	56.68	-0.221	0.8260

Main takeaway: On average,

- 1. Black has credit debt of 531.00.
- 2. Asian has 18.69 less debt than the Black.
- 3. Caucasian has 12.50 less debt than the Black.
- 4. Asian has _____ less debt than Caucasian.

Question: How can we decide if there is any difference in credit card balance between the ethnicities?

Linear model diagnosis

Our model

Recall the linear regression model on n data points:

$$y_1 = \beta_0 + \beta_1 x_{11} + \ldots + \epsilon_1$$

$$y_2 = \beta_0 + \beta_1 x_{21} + \ldots + \epsilon_2$$

$$\vdots$$

$$y_n = \beta_0 + \beta_1 x_{n1} + \ldots + \epsilon_n$$

In this model, we assume that

Our model

Recall the linear regression model on n data points:

$$y_1 = \beta_0 + \beta_1 x_{11} + \ldots + \epsilon_1$$

$$y_2 = \beta_0 + \beta_1 x_{21} + \ldots + \epsilon_2$$

$$\vdots$$

$$y_n = \beta_0 + \beta_1 x_{n1} + \ldots + \epsilon_n$$

In this model, we assume that

1. $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are independent.

Our model

Recall the linear regression model on n data points:

$$y_1 = \beta_0 + \beta_1 x_{11} + \ldots + \epsilon_1$$

$$y_2 = \beta_0 + \beta_1 x_{21} + \ldots + \epsilon_2$$

$$\vdots$$

$$y_n = \beta_0 + \beta_1 x_{n1} + \ldots + \epsilon_n$$

In this model, we assume that

- 1. $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are independent.
- 2. $\epsilon_i \sim N(0, \sigma^2)$. Specifically, they share the same variance σ^2 .

1. If $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are **not** independent

Then, all tests in the previous lecture are invalid:

$$\frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)}$$
$$\frac{\hat{\beta}_i}{\text{SE}(\hat{\beta})}$$

2. If $\epsilon_1, \ldots, \epsilon_n$ do **not** share the same variance There is no closed-form formula for $Cov(\hat{\beta})$

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \epsilon_i$$
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \beta_p x_{ip}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \epsilon_i$$
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \beta_p x_{ip}$$
$$\approx \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \epsilon_i$$
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \beta_p x_{ip}$$
$$\approx \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$$

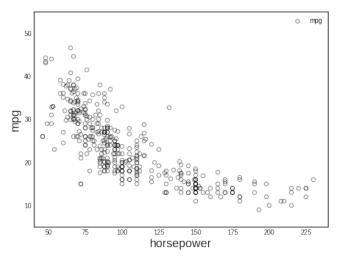
We will check if the **residuals**:

residual of the i-th point $= y_i - \hat{y}_i \approx \epsilon_i$

satisfy all these assumptions

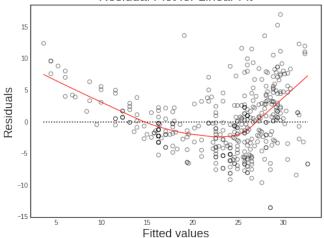
1. Non-linearity of the data

• Maybe the relationship between the predictors and the response is non-linear.



Residual plot

• Plot between the **fitted values** \hat{y}_i and the **residuals** $y_i - \hat{y}_i$.

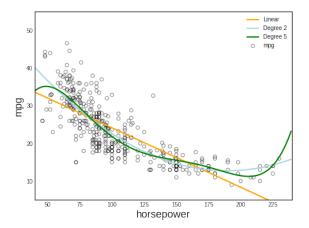


Residual Plot for Linear Fit

Non-linear regression

Try a polynomial function of the horsepower:

 $\mathsf{mpg} = \beta_0 + \beta_1 \times \mathsf{horsepower} + \beta_2 \times \mathsf{horsepower}^2 + \epsilon.$



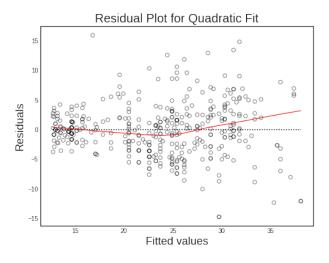
Estimates of coefficients

	\hat{eta}_i	$SE(\hat{\beta}_i)$	t-statistic	<i>p</i> -value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
horsepower ²	-0.0012	0.0001	10.1	< 0.0001

Two things indicate that the quadratic fit is better:

- The *p*-value of **horsepower**² is significant.
- The *R*² of this model is 0.688 compared to 0.606 of the linear model.

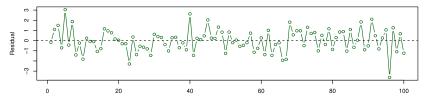
Residual plot of non-linear regression



The pattern disappears

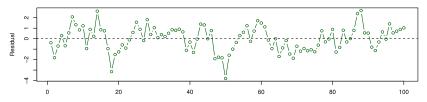
2. Correlation of error terms

$$\rho = \operatorname{corr}(\epsilon_{i-1}, \epsilon_i)$$



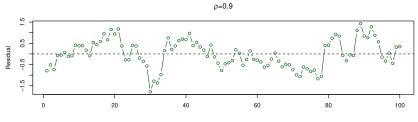
2. Correlation of error terms

$$\rho = \operatorname{corr}(\epsilon_{i-1}, \epsilon_i)$$



2. Correlation of error terms

$$\rho = \operatorname{corr}(\epsilon_{i-1}, \epsilon_i)$$



Observation

Durbin-Watson test

used to test if there is any correlation in the error terms

 H_0 :There is no correlation among the residuals H_1 :The residuals are autocorrelated

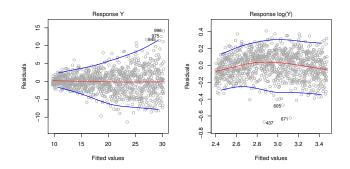
The test statistic is

$$d = \sum_{i=2}^{n} \left(e_i - e_{i-1} \right)^2 / \sum_{i=1}^{n} e_i^2$$

Procedure: Choose a significance level α , then look up the value of d_L and d_U

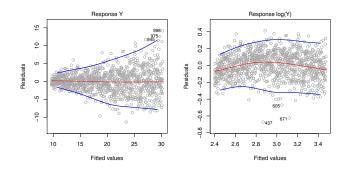
- Reject H_0 if $d < d_L$
- Do not reject H_0 if $d > d_U$
- Test inconclusive if $d_L < d < d_U$

3. Non-constant variance of error terms



• The variance increases as the fitted value increases.

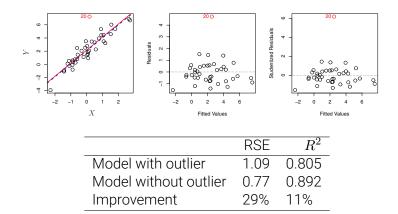
3. Non-constant variance of error terms



- The variance increases as the fitted value increases.
- Try transformation $Y \to \log(Y)$ or $Y \to \sqrt{Y}$ before fitting the model.

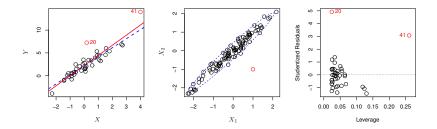
4. Outliers

A single point can heavily influence the RSE and R^2 of the model.



5. High leverage points

- High leverage point is a point with an unusual value of x_i.
- Detect high leverage points using the **leverage statistic**.



6. Collinearity

- **collinearity problem** happens when two predictors are highly correlated to each other.
- Highly correlated variables cause problems when fitting the model.

Example: Suppose we have data (x_i, y_i, z_i) from the true model:

$$y = 2x + 3z + \epsilon$$

and assume that z = x.

Example: Suppose we have data (x_i, y_i, z_i) from the true model:

$$y = 2x + 3z + \epsilon$$

and assume that z = x. Fitted model can be:

$$\hat{y}_i = 2x_i + 3z_i$$

Example: Suppose we have data (x_i, y_i, z_i) from the true model:

$$y = 2x + 3z + \epsilon$$

and assume that z = x. Fitted model can be:

$$\hat{y}_i = 2x_i + 3z_i$$

or
$$\hat{y}_i = 1x_i + 4z_i$$

Example: Suppose we have data (x_i, y_i, z_i) from the true model:

$$y = 2x + 3z + \epsilon$$

and assume that z = x. Fitted model can be:

$$\hat{y}_i = 2x_i + 3z_i$$

or $\hat{y}_i = 1x_i + 4z_i$
 $\hat{y}_i = 5x_i$

Example: Suppose we have data (x_i, y_i, z_i) from the true model:

$$y = 2x + 3z + \epsilon$$

and assume that z = x. Fitted model can be:

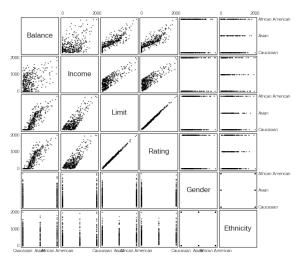
$$\hat{y}_i = 2x_i + 3z_i$$

or $\hat{y}_i = 1x_i + 4z_i$
 $\hat{y}_i = 5x_i$

Fitting algorithm does not know which is the true model!

Credit balance data

Detect collinearity using **correlation matrix**. Remove a variable if the correlation is close to -1 or 1.



Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Example: Predictors x_i , z_i and w_i where $x_i = z_i + 2w_i$.

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Example: Predictors x_i , z_i and w_i where $x_i = z_i + 2w_i$.

Cannot be detected with correlation matrix. Instead, we use **variance inflation factor**

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_{-i}}^2},$$

where $R_{X_i|X_{-i}}^2$ is the R^2 from a regression of X_i onto all other predictors.

Variance inflation factor

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_{-i}}^2}.$$

[High multicol. in $X_i] \to [R^2_{X_i|X_{-i}} \text{ is close to } 1] \to [\text{high } VIF(\hat{\beta}_i)]$

Variance inflation factor

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_{-i}}^2}.$$
[High multicol. in X_i] \rightarrow [$R_{X_i|X_{-i}}^2$ is close to 1] \rightarrow [high $VIF(\hat{\beta}_i)$]

General rule: There is multicollinearity if VIF is higher than 5 or 10

Solution: Drop the variable (in this case, X_i).

Reference

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani