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Why can’t we use linear regression
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Analyzing Time Series



Notations

Time series is often denoted by

. . . Yt−2 Yt−1 Yt Yt+1 Yt+2 . . .
time index

Lag is an amount of time passed.

Example: lag 5 of Yt is yt−5.
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Time series decomposition



Time series decomposition
Goal:

▶ Extract trend seasonality

▶ Visualize and improve understanding of time series
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Classical decomposition

Two types of decomposition:

1. Additive decomposition

yt = St + Tt + Rt ,

where

▶ St is the seasonal component.

▶ Tt is the trend component.

▶ Rt is the remainder component.



Classical decomposition

Two types of decomposition:

2. Multiplicative decomposition

yt = St × Tt × Rt ,

where

▶ St is the seasonal component.

▶ Tt is the trend component.

▶ Rt is the remainder component.



Additive decomposition

yt = St + Tt + Rt ,

Step 1: Estimate the Trend T̂t .

Moving average is a method to estimate the trend.

Pick m, usually the seasonal period.

T̂t =

{
m-MA if m is an odd number.

2×m-MA if m is an even number.



Moving averages

Moving average is a method to estimate the trend.

Time series: yt : y1, y2, . . . , yT

Moving average of order m of yt is

T̂t =
1

m

k∑
i=−k

yt+i ,

where m = 2k + 1.

average



Example: electricity sold to customers in South Australia

Year Sales (GWh) 5-MA
1989 2354.34
1990 2379.71
1991 2318.52 2381.53
1992 2468.99 2424.56
1993 2386.09 2463.76
1994 2569.47 2552.60
1995 2575.72 2627.70
1996 2762.72 2750.62
1997 2844.50 2858.35
...

...
...

1997 2844.50 2858.35
2006 3527.48 3485.43
2007 3637.89
2008 3655.00



Example: moving average of different orders



Moving average of even orders
For example, m = 4

average

Idea: use 2-MA after 4-MA

average

average

average



Moving average of even orders
For example, m = 4

average

Idea: use 2-MA after 4-MA

average

average

average



Australian quarterly beer production

Year Quarter Observation 4-MA 2x4-MA
1992 Q1 443
1992 Q2 410 451.25
1992 Q3 420 448.75 450
1992 Q4 532 451.5 450.12
1993 Q1 433 449 450.25
1993 Q2 421 444 446.5
1993 Q3 410 448 446
1993 Q4 512 438 443
1994 Q1 449 441.25 439.62
...

...
...

...
...

1996 Q3 398 433.75 430.88
1996 Q4 507 433.75 433.75



2×m-MA

The 2×4-MA of yt is
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2×m-MA
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Example: monthly data
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Step 2: Calculate the detrended series

yt − T̂t



Additive decomposition

Step 3: Compute the mean of yt − T̂t for each seasonal unit.
For example, for monthly data, we compute

S1 = the mean of all values in January

S2 = the mean of all values in February

and so on...

Then, these seasonal values are adjusted to have zero mean.

Ŝ1 = S1 − S

Ŝ2 = S2 − S

and so on...

where S = 1
12

∑12
i=1 Si
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Additive decomposition
Step 4: The remainder component is

R̂t = yt − T̂t − Ŝt .

da
ta

se
as

on
al

tr
en

d
re

m
ai

nd
er

2000 2005 2010

60

80

100

120

−10

0

10

80

90

100

110

−4
0
4
8

Year

Classical additive decomposition
    of electrical equipment index



Multiplicative decomposition

▶ Step 1: Pick m, usually the seasonal period.

T̂t =

{
m-MA if m is an odd number.

2×m-MA if m is an even number.

▶ Step 2: Calculate the detrended series

yt

T̂t

.



Multiplicative decomposition

▶ Step 1: Pick m, usually the seasonal period.

T̂t =

{
m-MA if m is an odd number.

2×m-MA if m is an even number.

▶ Step 2: Calculate the detrended series
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Multiplicative decomposition

▶ Step 3: Compute the mean of yt/T̂t for each seasonal unit.
For example, for monthly data, we compute

S1 = the mean of all values in January

S2 = the mean of all values in February

and so on...

Then, these seasonal values are adjusted to have sum of 1 .

Ŝ1 = S1/S

Ŝ2 = S2/S

and so on...

where S =
∑12

i=1 Si .



Multiplicative decomposition
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For example, for monthly data, we compute
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Multiplicative decomposition
▶ Step 4: The remainder component is

R̂t =
yt

T̂t Ŝt
.
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Strength of trend (Wang, Smith & Hyndman, 2006)

Back to additive decomposition:

yt = Tt + St + Rt .

Observation: for a time series with strong trend,

Var(Rt)

Var(Tt + Rt)
should be small.

for a time series with strong seasonality,

Var(Rt)

Var(St + Rt)
should be small.
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Strength of trend (Wang, Smith & Hyndman, 2006)

So we define the strength of trend as

FT = max

(
0, 1− Var(Rt)

Var(Tt + Rt)

)
and the strength of seasonality as

FS = max

(
0, 1− Var(Rt)

Var(St + Rt)

)
.

Higher value = Stronger effect

This is useful when we have a collection of time series and we want
to find the one with the most trend or seasonality.



Forecasting with decomposition
We can make forecast from the decomposition

yt = Ŝt + (T̂t + R̂t),

where we can use time series model to forecast the seasonally
adjusted component Ât = T̂t + R̂t and then add back the seasonal
component St .
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Forecasting with decomposition
We can make forecast from the decomposition

yt = Ŝt + (T̂t + R̂t),

where we can use time series model to forecast the seasonally
adjusted component Ât = T̂t + R̂t and then add back the seasonal
component St .
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