Time Series Analysis 1 DS351

Why can't we use linear regression

Time

Error terms are correlated.

Why can't we use linear regression

Air Passenger numbers from 1949 to 1961

Variance of the errors increases with time.

Why can't we use linear regression

Seasonality, which implies non-linearity!

Analyzing Time Series

Notations

Time series is often denoted by

Notations

Time series is often denoted by

Lag is an amount of time passed. Example: lag 5 of Y_t is y_{t-5} .

Time series decomposition

Time series decomposition

Goal:

- Extract trend seasonality
- Visualize and improve understanding of time series

Classical decomposition

Two types of decomposition:

1. Additive decomposition

$$y_t = S_t + T_t + R_t,$$

where

- S_t is the seasonal component.
- \blacktriangleright T_t is the trend component.
- \triangleright R_t is the remainder component.

Classical decomposition

Two types of decomposition:

2. Multiplicative decomposition

$$y_t = S_t \times T_t \times R_t,$$

where

- \triangleright S_t is the seasonal component.
- \blacktriangleright T_t is the trend component.
- \triangleright R_t is the remainder component.

$$y_t = S_t + T_t + R_t,$$

Step 1: Estimate the **Trend** \hat{T}_t .

Moving average is a method to estimate the trend.

Pick m, usually the seasonal period.

$$\widehat{T}_t = egin{cases} m \mbox{-MA} & \mbox{if } m \mbox{ is an odd number.} \\ 2 imes m \mbox{-MA} & \mbox{if } m \mbox{ is an even number.} \end{cases}$$

Moving averages

Moving average is a method to estimate the trend.

Time series: $y_t : y_1, y_2, \ldots, y_T$

Moving average of order m of y_t is

$$\widehat{T}_t = \frac{1}{m} \sum_{i=-k}^k y_{t+i},$$

where m = 2k + 1.

$$\begin{array}{c} m=5\\ k=2 \end{array} \fbox{0.5cm} \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ y_{t-2} & y_{t-1} & y_t & y_{t+1} & y_{t+2} \end{array} \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Example: electricity sold to customers in South Australia

Year	Sales (GWh)	5-MA
1989	2354.34	
1990	2379.71	
1991	2318.52	2381.53
1992	2468.99	2424.56
1993	2386.09	2463.76
1994	2569.47	2552.60
1995	2575.72	2627.70
1996	2762.72	2750.62
1997	2844.50	2858.35
÷	:	:
1997	2844.50	2858.35
2006	3527.48	3485.43
2007	3637.89	
2008	3655.00	

Example: moving average of different orders

3400 -5 3000 -2600 -1990 1995 2000 2005 Year

7-MA

5-MA

Moving average of even orders

For example, m = 4

$$m = 4$$

$$k = 2$$

$$m = 4$$

$$y_{t-2}$$

$$y_{t-1}$$

$$y_t$$

$$y_{t+1}$$

$$y_{t+1}$$

$$y_{t+1}$$

$$y_{t-2}$$

$$y_{t-1}$$

$$y_t$$

$$y_{t+1}$$

Moving average of even orders

For example, m = 4

Idea: use 2-MA after 4-MA

Australian quarterly beer production

Year	Quarter	Observation	4-MA	2x4-MA
1992	Q1	443		
1992	Q2	410	451.25	
1992	Q3	420	448.75	450
1992	Q4	532	451.5	450.12
1993	Q1	433	449	450.25
1993	Q2	421	444	446.5
1993	Q3	410	448	446
1993	Q4	512	438	443
1994	Q1	449	441.25	439.62
÷	:	÷	:	:
1996	Q3	398	433.75	430.88
1996	Q4	507	433.75	433.75

$2 \times m$ -MA

The 2×4-MA of y_t is

$$\begin{aligned} \widehat{T}_t &= \frac{1}{2} \left[\frac{1}{4} (y_{t-2} + y_{t-1} + y_t + y_{t+1}) + \frac{1}{4} (y_{t-1} + y_t + y_{t+1} + y_{t+2}) \right] \\ &= \frac{1}{8} y_{t-2} + \frac{1}{4} y_{t-1} + \frac{1}{4} y_t + \frac{1}{4} y_{t+1} + \frac{1}{8} y_{t+2}. \end{aligned}$$

$2 \times m$ -MA

The 2×4-MA of y_t is

$$\begin{aligned} \widehat{T}_t &= \frac{1}{2} \left[\frac{1}{4} (y_{t-2} + y_{t-1} + y_t + y_{t+1}) + \frac{1}{4} (y_{t-1} + y_t + y_{t+1} + y_{t+2}) \right] \\ &= \frac{1}{8} y_{t-2} + \frac{1}{4} y_{t-1} + \frac{1}{4} y_t + \frac{1}{4} y_{t+1} + \frac{1}{8} y_{t+2}. \end{aligned}$$

In general, The $2 \times m$ -MA of y_t is

$$\widehat{T}_{t} = \frac{1}{2m} y_{t-k} + \ldots + \frac{1}{m} y_{t-1} + \frac{1}{m} y_{t} + \frac{1}{m} y_{t+1} + \ldots + \frac{1}{2m} y_{t+k},$$
where $m = 2k$.

Example: monthly data

Electrical equipment manufacturing (Euro area)

 $2\times$ 4-MA for quarterly beer production, 7-MA for daily traffic data

Step 2: Calculate the detrended series

$$y_t - \widehat{T}_t$$

Step 3: Compute the mean of $y_t - \hat{T}_t$ for each seasonal unit. For example, for monthly data, we compute

> S_1 = the mean of all values in January S_2 = the mean of all values in February and so on...

Step 3: Compute the mean of $y_t - \hat{T}_t$ for each seasonal unit. For example, for monthly data, we compute

$$S_1$$
 = the mean of all values in January
 S_2 = the mean of all values in February
and so on...

Then, these seasonal values are adjusted to have zero mean.

$$\widehat{S}_1 = S_1 - \overline{S}$$
$$\widehat{S}_2 = S_2 - \overline{S}$$
and so on

where $\overline{S} = \frac{1}{12} \sum_{i=1}^{12} S_i$

Step 4: The remainder component is

$$\widehat{R}_t = y_t - \widehat{T}_t - \widehat{S}_t.$$

Step 1: Pick *m*, usually the seasonal period.

$$\widehat{T}_t = \begin{cases} m\text{-}\mathsf{M}\mathsf{A} & \text{if } m \text{ is an odd number.} \\ 2 \times m\text{-}\mathsf{M}\mathsf{A} & \text{if } m \text{ is an even number.} \end{cases}$$

Step 1: Pick *m*, usually the seasonal period.

$$\widehat{T}_t = egin{cases} m\text{-}\mathsf{M}\mathsf{A} & ext{if }m ext{ is an odd number.} \\ 2 imes m\text{-}\mathsf{M}\mathsf{A} & ext{if }m ext{ is an even number.} \end{cases}$$

Step 2: Calculate the detrended series

$$\frac{y_t}{\widehat{T}_t}$$
.

Step 3: Compute the mean of y_t/\hat{T}_t for each seasonal unit. For example, for monthly data, we compute

> S_1 = the mean of all values in January S_2 = the mean of all values in February and so on...

Step 3: Compute the mean of y_t/\hat{T}_t for each seasonal unit. For example, for monthly data, we compute

> S_1 = the mean of all values in January S_2 = the mean of all values in February and so on...

Then, these seasonal values are adjusted to have sum of 1.

$$\widehat{S}_1 = S_1 / \overline{S}$$
$$\widehat{S}_2 = S_2 / \overline{S}$$

and so on...

where $\overline{S} = \sum_{i=1}^{12} S_i$.

Step 4: The remainder component is

$$\widehat{R}_t = \frac{y_t}{\widehat{T}_t \widehat{S}_t}.$$

Strength of trend (Wang, Smith & Hyndman, 2006)

Back to additive decomposition:

$$y_t = T_t + S_t + R_t.$$

Observation: for a time series with strong trend,

$$\frac{\operatorname{Var}(R_t)}{\operatorname{Var}(T_t + R_t)}$$
 should be small.

Strength of trend (Wang, Smith & Hyndman, 2006)

Back to additive decomposition:

$$y_t = T_t + S_t + R_t.$$

Observation: for a time series with strong trend,

$$\frac{\operatorname{Var}(R_t)}{\operatorname{Var}(T_t + R_t)}$$
 should be small.

for a time series with strong seasonality,

$$\frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)} \text{ should be small.}$$

Strength of trend (Wang, Smith & Hyndman, 2006)

So we define the strength of trend as

$$F_{T} = \max\left(0, 1 - rac{\mathsf{Var}(R_t)}{\mathsf{Var}(T_t + R_t)}
ight)$$

and the strength of seasonality as

$$\mathcal{F}_{\mathcal{S}} = \max\left(0, 1 - rac{\mathsf{Var}(R_t)}{\mathsf{Var}(S_t + R_t)}
ight).$$

Higher value = Stronger effect

This is useful when we have a collection of time series and we want to find the one with the most trend or seasonality.

Forecasting with decomposition

We can make forecast from the decomposition

$$y_t = \widehat{S}_t + (\widehat{T}_t + \widehat{R}_t),$$

where we can use time series model to forecast the seasonally adjusted component $\widehat{A}_t = \widehat{T}_t + \widehat{R}_t$ and then add back the seasonal component S_t .

Naive forecasts of seasonally adjusted data

Forecasting with decomposition

We can make forecast from the decomposition

$$y_t = \widehat{S}_t + (\widehat{T}_t + \widehat{R}_t),$$

where we can use time series model to forecast the seasonally adjusted component $\widehat{A}_t = \widehat{T}_t + \widehat{R}_t$ and then add back the seasonal component S_t .

