Time Series Analysis 2 DS351

We can forecast simply using the previous value:

$$\hat{y}_{T+1} = y_T$$

We can forecast simply using the previous value:

$$\hat{y}_{T+1} = y_T$$

or a simple average

$$\hat{y}_{T+1} = rac{1}{T} \sum_{i=1}^{T} y_t$$

We can forecast simply using the previous value:

$$\hat{y}_{T+1} = y_T$$

or a simple average

$$\hat{y}_{T+1} = \frac{1}{T} \sum_{i=1}^{T} y_t$$

Notice that both forecasts use weighted average of previous observations.

We can forecast simply using the previous value:

$$\hat{y}_{T+1} = y_T$$

or a simple average

$$\hat{y}_{T+1} = \frac{1}{T} \sum_{i=1}^{I} y_t$$

- Notice that both forecasts use weighted average of previous observations.
- We want to make a forecasting model that lie between these two extremes.

Idea: give the largest weight to the most recent:

$$\hat{y}_{T+1} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots \\ + \alpha^{T-1} y_1 + \alpha^T l_0$$

This model has two data-dependent parameters:

- α is the **smoothing parameter**
- *l*₀ is the **initial value**

Idea: give the largest weight to the most recent:

$$\hat{y}_{T+1} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots + \alpha^{T-1} y_1 + \alpha^T l_0$$

Observations:

•
$$\alpha < \alpha(1-\alpha) < \alpha(1-\alpha)^2 < \dots$$
 (decreasing weights)

Idea: give the largest weight to the most recent:

$$\hat{y}_{T+1} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots + \alpha^{T-1} y_1 + \alpha^T l_0$$

Observations:

• $\alpha < \alpha(1-\alpha) < \alpha(1-\alpha)^2 < \dots$ (decreasing weights)

The sum of the weights is:

Idea: give the largest weight to the most recent:

$$\hat{y}_{\tau+1} = \alpha y_{\tau} + \alpha (1-\alpha) y_{\tau-1} + \alpha (1-\alpha)^2 y_{\tau-2} + \dots + \alpha^{\tau-1} y_1 + \alpha^{\tau} l_0$$

The forecast at T = 2 is

$$\hat{y}_2 = \alpha y_1 + \alpha (1 - \alpha) I_0$$

Idea: give the largest weight to the most recent:

$$\hat{y}_{T+1} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots \\ + \alpha^{T-1} y_1 + \alpha^T l_0$$

The forecast at T = 2 is

$$\hat{y}_2 = \alpha y_1 + \alpha (1 - \alpha) I_0$$

The forecast at T = 3 is

$$\hat{y}_3 = \alpha y_2 + \alpha (1-\alpha) y_1 + \alpha (1-\alpha)^2 l_0$$

Idea: give the largest weight to the most recent:

$$\hat{y}_{\tau+1} = \alpha y_{\tau} + \alpha (1-\alpha) y_{\tau-1} + \alpha (1-\alpha)^2 y_{\tau-2} + \dots \\ + \alpha^{\tau-1} y_1 + \alpha^{\tau} l_0$$

The forecast at T = 2 is

$$\hat{y}_2 = \alpha y_1 + \alpha (1 - \alpha) I_0$$

The forecast at T = 3 is

$$\hat{y}_3 = \alpha y_2 + \alpha (1-\alpha) y_1 + \alpha (1-\alpha)^2 l_0$$
$$= \alpha y_2 + (1-\alpha) \hat{y}_1$$

Idea: give the largest weight to the most recent:

$$\hat{y}_{T+1} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots \\ + \alpha^{T-1} y_1 + \alpha^T l_0$$

The forecast at T = 2 is

$$\hat{y}_2 = \alpha y_1 + \alpha (1 - \alpha) I_0$$

The forecast at T = 3 is

$$\hat{y}_3 = \alpha y_2 + \alpha (1 - \alpha) y_1 + \alpha (1 - \alpha)^2 l_0$$

= $\alpha y_2 + (1 - \alpha) \hat{y}_1$

at T = 4 is

$$\hat{y}_4 = \alpha y_3 + (1 - \alpha)\hat{y}_2$$

Two forms of ES:

$$\hat{y}_{T+1} = \alpha y_T + (1 - \alpha) \hat{y}_T \\ = \sum_{j=0}^{T-1} \alpha (1 - \alpha)^j y_{T-j} + (1 - \alpha)^T l_0$$

where α , l_0 is an **initial value**, are two parameters to be learned from the data y_1, y_2, \ldots, y_T

Learning parameters from the data

ES model:

$$\hat{y}_{T+1} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j y_{T-j} + (1-\alpha)^T h_0$$

From input data y_1, y_2, \ldots, y_T , we need to find α and l_0 that minimize the SSE.

$$\mathsf{SSE}(\alpha, l_0) = \sum_{t=1}^T (y_t - \hat{y}_t)^2$$

This is a function of $\alpha, \alpha^2, \ldots, \alpha^T, I_0$, so not as easy to optimize as linear regression

Example: oil production in Saudi Arabia

Learned ES parameters: $\hat{\alpha} = 0.83$ and $\hat{l}_0 = 446.6$.

When there is a trend but no seasonality, use Holt's method **Holt's** method

 $\begin{array}{ll} \text{Forecast equation} & \hat{y}_{t+h|t} = \ell_t + hb_t \\ \text{Level equation} & \ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend equation} & b_t = \beta(\ell_t - \ell_{t-1}) + (1-\beta)b_{t-1}, \end{array}$

There are **4** parameters here: α , β , ℓ_0 and b_0 .

Holt's method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + h b_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1}, \end{split}$$

- *I_t* is the level (estimate of *y_t*).
- *b_t* is the slope.
- Suppose that we have *l*_{t-1} and *b*_{t-1}.

Holt's method

$$\begin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1-\beta)b_{t-1}, \end{aligned}$$

- ► I_t is the "average" between y_t and $I_{t-1} + b_{t-1}$.
- ▶ Find $I_{t-1} + b_{t-1}$.

Holt's method

$$\begin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1-\beta)b_{t-1}, \end{aligned}$$

- ► I_t is the "average" between y_t and $I_{t-1} + b_{t-1}$.
- ▶ Find $I_{t-1} + b_{t-1}$.
- Then find I_t .

Holt's method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1-\beta)b_{t-1}, \end{split}$$

- ▶ b_t is the "average" between $l_t - l_{t-1}$ and b_{t-1} .
- Start the first forecast $\hat{y}_{t+1|t}$.

The forecast is a linear function of h.

 $\hat{y}_{t+h|t} = \ell_t + hb_t$

Air passengers data

Year	Time	Observation	Level	Slope	Forecast
	t	Уt	ℓ_t	bt	$y_{t t-1}$
1989	0		15.57	2.102	
1990	1	17.55	17.57	2.102	17.67
1991	2	21.86	21.49	2.102	19.68
1992	3	23.89	23.84	2.102	23.59
1993	4	26.93	26.76	2.102	25.94
÷	:	:	:	:	:
2016	27	72.60	72.50	2.102	72.02
	h				$\hat{y}_{t+h t}$
	1				74.60
	2				76.70
	3				78.80
	4				80.91
	5				83.01

Damped Holt's method

- Linear trend is not realistic in many situations.
- Examples: Total factory output with a fixed number of machine.

Damped Holt's method (Gardner & McKenzie, 1985)

Fix $0 \le \phi \le 1$

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + (\phi + \phi^2 + \dots + \phi^h) b_t \\ \ell_t &= \alpha y_t + (1 - \alpha) (\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}. \end{split}$$

Damped Holt's method

- Linear trend is not realistic in many situations.
- Examples: Total factory output with a fixed number of machine.

Damped Holt's method (Gardner & McKenzie, 1985)

Fix $0 \le \phi \le 1$

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

 $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$
 $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$

• $\phi = 1 \rightarrow \mathsf{Holt's} \mathsf{ method}$

• $\phi = 0 \rightarrow$ forecast with a constant

ln practice, $\phi \ge 0.8$.

Air passengers data

$$\phi = 0.9$$

Use this method when there is seasonality.

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

- Basically Holt's method + seasonality.
- *m* is the frequency of seasonality e.g. *m* = 12 for monthly data.

Use this method when there is seasonality.

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

- Basically Holt's method + seasonality.
- *m* is the frequency of seasonality e.g. *m* = 12 for monthly data.
- ► l_t is the "average" between observation with seasonality removed $y_t s_{t-m}$ and $l_{t-1} + b_{t-1}$.

Use this method when there is seasonality.

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

- Basically Holt's method + seasonality.
- *m* is the frequency of seasonality e.g. *m* = 12 for monthly data.
- ► I_t is the "average" between observation with seasonality removed $y_t s_{t-m}$ and $I_{t-1} + b_{t-1}$.

► s_t is the "average" between observation with level and trend removed y_t − l_{t-1} − b_{t-1} and the value of previous season s_{t-m}.

Holt-Winters' method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

▶ s_{t+h-m} the latest seasonality in the data that has the same seasonal index (month, day of the week etc.) as t + h.

Holt-Winters' method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

- ▶ s_{t+h-m} the latest seasonality in the data that has the same seasonal index (month, day of the week etc.) as t + h.
- For example, if t = January, 2019, h = 2, and m = 12, then t + h = March, 2019 and t + h m = March, 2018.

Holt-Winters' method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

- ▶ s_{t+h-m} the latest seasonality in the data that has the same seasonal index (month, day of the week etc.) as t + h.
- For example, if t = January, 2019, h = 2, and m = 12, then t + h = March, 2019 and t + h − m = March, 2018.
- There are a lot of parameters now: α , β , γ , ℓ_0 , b_0 , s_{-m+1} , s_{-m+2}, \ldots, s_0 .

Holt-Winters' multiplicative method

We can replace

add by $s_t \rightarrow \text{multiply by} s_t$ subtract by $s_t \rightarrow \text{divide by} s_t$.

Holt-Winters' multiplicative method

$$\begin{split} \hat{y}_{t+h|t} &= (\ell_t + hb_t)s_{t-} \\ \ell_t &= \alpha \frac{y_t}{s_{t-m}} + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1-\gamma)s_{t-m}. \end{split}$$

International visitors nights in Australia

Forecasts using Holt-Winters' method

	t	Уt	ℓ_t	bt	s _t	Уt
2004 Q1	-3				9.70	
2004 Q2	-2				-9.31	
2004 Q3	-1				-1.69	
2004 Q4	0		32.26	0.70	1.31	
2005 Q1	1	42.21	32.82	0.70	9.50	42.66
2005 Q2	2	24.65	33.66	0.70	-9.13	24.21
:	÷	:	:	÷	:	÷
2015 Q4	44	66.06	63.22	0.70	2.35	64.22
	h					$y_{t+h t}$
2016 Q1	1					76.10
2016 Q2	2					51.60
2016 Q3	3					63.97
2016 Q4	4					68.37
2017 Q1	5					78.90
2017 Q2	6					54.41