
Time Series Analysis 2
DS351



Exponential smoothing



Motivation

We can forecast simply using the previous value:

ŷT+1 = yT

or a simple average

ŷT+1 =
1

T

T∑
i=1

yt

▶ Notice that both forecasts use weighted average of previous
observations.

▶ We want to make a forecasting model that lie between these
two extremes.
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Exponential smoothing

Idea: give the largest weight to the most recent:

ŷT+1 = αyT + α(1− α)yT−1 + α(1− α)2yT−2 + . . .

+ αT−1y1 + αT l0

This model has two data-dependent parameters:

▶ α is the smoothing parameter

▶ l0 is the initial value
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ŷT+1 = αyT + α(1− α)yT−1 + α(1− α)2yT−2 + . . .

+ αT−1y1 + αT l0

The forecast at T = 2 is
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Exponential smoothing
Idea: give the largest weight to the most recent:
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Exponential smoothing

Two forms of ES:

ŷT+1 = αyT + (1− α)ŷT

=
T−1∑
j=0

α(1− α)jyT−j + (1− α)T l0

where α, l0 is an initial value, are two parameters to be learned
from the data y1, y2, . . . , yT



Learning parameters from the data

ES model:

ŷT+1 =
T−1∑
j=0

α(1− α)jyT−j + (1− α)T l0

From input data y1, y2, . . . , yT , we need to find α and l0 that
minimize the SSE.

SSE(α, l0) =
T∑
t=1

(yt − ŷt)
2

This is a function of α, α2, . . . , αT , l0, so not as easy to optimize
as linear regression



Example: oil production in Saudi Arabia

Learned ES parameters: α̂ = 0.83 and l̂0 = 446.6.



Holt’s linear trend method

When there is a trend but no seasonality, use Holt’s method Holt’s
method

Forecast equation ŷt+h|t = ℓt + hbt

Level equation ℓt = αyt + (1− α)(ℓt−1 + bt−1)

Trend equation bt = β(ℓt − ℓt−1) + (1− β)bt−1,

There are 4 parameters here: α, β, ℓ0 and b0.



Holt’s linear trend method

Holt’s method

Forecast equation ŷt+h|t = ℓt + hbt

Level equation ℓt = αyt + (1− α)(ℓt−1 + bt−1)

Trend equation bt = β(ℓt − ℓt−1) + (1− β)bt−1,

▶ lt is the level
(estimate of yt).

▶ bt is the slope.

▶ Suppose that we have
lt−1 and bt−1.



Holt’s linear trend method

Holt’s method

Forecast equation ŷt+h|t = ℓt + hbt
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Level equation ℓt = αyt + (1− α)(ℓt−1 + bt−1)

Trend equation bt = β(ℓt − ℓt−1) + (1− β)bt−1,

▶ lt is the “average”
between yt and
lt−1 + bt−1.

▶ Find lt−1 + bt−1.

▶ Then find lt .



Holt’s linear trend method

Holt’s method

Forecast equation ŷt+h|t = ℓt + hbt

Level equation ℓt = αyt + (1− α)(ℓt−1 + bt−1)

Trend equation bt = β(ℓt − ℓt−1) + (1− β)bt−1,

▶ bt is the “average”
between lt − lt−1 and
bt−1.

▶ Start the first forecast
ŷt+1|t .



Holt’s linear trend method

ŷt+h|t = ℓt + hbt

The forecast is a linear function of h.



Air passengers data

Year Time Observation Level Slope Forecast
t yt ℓt bt yt|t−1

1989 0 15.57 2.102
1990 1 17.55 17.57 2.102 17.67
1991 2 21.86 21.49 2.102 19.68
1992 3 23.89 23.84 2.102 23.59
1993 4 26.93 26.76 2.102 25.94
...

...
...

...
...

...
2016 27 72.60 72.50 2.102 72.02

h ŷt+h|t
1 74.60
2 76.70
3 78.80
4 80.91
5 83.01



Damped Holt’s method

▶ Linear trend is not realistic in many situations.

▶ Examples: Total factory output with a fixed number of
machine.

Damped Holt’s method (Gardner & McKenzie, 1985)

Fix 0 ≤ ϕ ≤ 1

ŷt+h|t = ℓt + (ϕ+ ϕ2 + · · ·+ ϕh)bt

ℓt = αyt + (1− α)(ℓt−1 + ϕbt−1)

bt = β∗(ℓt − ℓt−1) + (1− β∗)ϕbt−1.

▶ ϕ = 1 → Holt’s method

▶ ϕ = 0 → forecast with a constant

▶ In practice, ϕ ≥ 0.8.
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Air passengers data
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Holt-Winters’ seasonal method
▶ Use this method when there is seasonality.

ŷt+h|t = ℓt + hbt + st+h-m

ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1)

bt = β(ℓt − ℓt−1) + (1− β)bt−1

st = γ(yt − ℓt−1 − bt−1) + (1− γ)st−m,

▶ Basically Holt’s method + seasonality.

▶ m is the frequency of seasonality e.g. m = 12 for monthly
data.

▶ lt is the “average” between observation with seasonality
removed yt − st−m and lt−1 + bt−1.

▶ st is the “average” between observation with level and
trend removed yt − lt−1 − bt−1 and the value of previous
season st−m.
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Holt-Winters’ method

ŷt+h|t = ℓt + hbt + st−

ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1)

bt = β(ℓt − ℓt−1) + (1− β)bt−1

st = γ(yt − ℓt−1 − bt−1) + (1− γ)st−m,

▶ st+h−m the latest seasonality in the data that has the same
seasonal index (month, day of the week etc.) as t + h.

▶ For example, if t = January, 2019, h = 2, and m = 12, then
t + h = March, 2019 and t + h −m = March, 2018.

▶ There are a lot of parameters now: α, β, γ, ℓ0, b0, s−m+1,
s−m+2, . . . , s0.
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ŷt+h|t = ℓt + hbt + st−

ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1)

bt = β(ℓt − ℓt−1) + (1− β)bt−1

st = γ(yt − ℓt−1 − bt−1) + (1− γ)st−m,

▶ st+h−m the latest seasonality in the data that has the same
seasonal index (month, day of the week etc.) as t + h.

▶ For example, if t = January, 2019, h = 2, and m = 12, then
t + h = March, 2019 and t + h −m = March, 2018.

▶ There are a lot of parameters now: α, β, γ, ℓ0, b0, s−m+1,
s−m+2, . . . , s0.



Holt-Winters’ seasonal method

Holt-Winters’ method
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Holt-Winters’ multiplicative method

We can replace

add by st → multiply byst

subtract by st → divide byst .

Holt-Winters’ multiplicative method

ŷt+h|t = (ℓt + hbt)st−

ℓt = α
yt

st−m
+ (1− α)(ℓt−1 + bt−1)

bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1

st = γ
yt

(ℓt−1 + bt−1)
+ (1− γ)st−m.



International visitors nights in Australia
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Forecasts using Holt-Winters’ method

t yt ℓt bt st yt
2004 Q1 -3 9.70
2004 Q2 -2 -9.31
2004 Q3 -1 -1.69
2004 Q4 0 32.26 0.70 1.31
2005 Q1 1 42.21 32.82 0.70 9.50 42.66
2005 Q2 2 24.65 33.66 0.70 -9.13 24.21
...

...
...

...
...

...
...

2015 Q4 44 66.06 63.22 0.70 2.35 64.22
h yt+h|t

2016 Q1 1 76.10
2016 Q2 2 51.60
2016 Q3 3 63.97
2016 Q4 4 68.37
2017 Q1 5 78.90
2017 Q2 6 54.41


