Time Series Analysis 2 DS351

Exponential smoothing

Motivation

We can forecast simply using the previous value:

$$
\hat{y}_{T+1}=y_{T}
$$

Motivation

We can forecast simply using the previous value:

$$
\hat{y}_{T+1}=y_{T}
$$

or a simple average

$$
\hat{y}_{T+1}=\frac{1}{T} \sum_{i=1}^{T} y_{t}
$$

Motivation

We can forecast simply using the previous value:

$$
\hat{y}_{T+1}=y_{T}
$$

or a simple average

$$
\hat{y}_{T+1}=\frac{1}{T} \sum_{i=1}^{T} y_{t}
$$

- Notice that both forecasts use weighted average of previous observations.

Motivation

We can forecast simply using the previous value:

$$
\hat{y}_{T+1}=y_{T}
$$

or a simple average

$$
\hat{y}_{T+1}=\frac{1}{T} \sum_{i=1}^{T} y_{t}
$$

- Notice that both forecasts use weighted average of previous observations.
- We want to make a forecasting model that lie between these two extremes.

Exponential smoothing

Idea: give the largest weight to the most recent:

$$
\begin{aligned}
\hat{y}_{T+1}=\alpha y_{T} & +\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^{2} y_{T-2}+\ldots \\
& +\alpha^{T-1} y_{1}+\alpha^{T} I_{0}
\end{aligned}
$$

This model has two data-dependent parameters:

- α is the smoothing parameter
- I_{0} is the initial value

Exponential smoothing

Idea: give the largest weight to the most recent:

$$
\begin{aligned}
\hat{y}_{T+1}=\alpha y_{T} & +\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^{2} y_{T-2}+\ldots \\
& +\alpha^{T-1} y_{1}+\alpha^{T} l_{0}
\end{aligned}
$$

Observations:

- $\alpha<\alpha(1-\alpha)<\alpha(1-\alpha)^{2}<\ldots$ (decreasing weights)

Exponential smoothing

Idea: give the largest weight to the most recent:

$$
\begin{aligned}
\hat{y}_{T+1}=\alpha y_{T} & +\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^{2} y_{T-2}+\ldots \\
& +\alpha^{T-1} y_{1}+\alpha^{T} l_{0}
\end{aligned}
$$

Observations:

- $\alpha<\alpha(1-\alpha)<\alpha(1-\alpha)^{2}<\ldots$ (decreasing weights)
- The sum of the weights is:

Exponential smoothing

Idea: give the largest weight to the most recent:

$$
\begin{aligned}
\hat{y}_{T+1}=\alpha y_{T} & +\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^{2} y_{T-2}+\ldots \\
& +\alpha^{T-1} y_{1}+\alpha^{T} I_{0}
\end{aligned}
$$

The forecast at $T=2$ is

$$
\hat{y}_{2}=\alpha y_{1}+\alpha(1-\alpha) l_{0}
$$

Exponential smoothing

Idea: give the largest weight to the most recent:

$$
\begin{aligned}
\hat{y}_{T+1}=\alpha y_{T} & +\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^{2} y_{T-2}+\ldots \\
& +\alpha^{T-1} y_{1}+\alpha^{T} I_{0}
\end{aligned}
$$

The forecast at $T=2$ is

$$
\hat{y}_{2}=\alpha y_{1}+\alpha(1-\alpha) l_{0}
$$

The forecast at $T=3$ is

$$
\hat{y}_{3}=\alpha y_{2}+\alpha(1-\alpha) y_{1}+\alpha(1-\alpha)^{2} \digamma_{0}
$$

Exponential smoothing

Idea: give the largest weight to the most recent:

$$
\begin{aligned}
\hat{y}_{T+1}=\alpha y_{T} & +\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^{2} y_{T-2}+\ldots \\
& +\alpha^{T-1} y_{1}+\alpha^{T} I_{0}
\end{aligned}
$$

The forecast at $T=2$ is

$$
\hat{y}_{2}=\alpha y_{1}+\alpha(1-\alpha) l_{0}
$$

The forecast at $T=3$ is

$$
\begin{aligned}
\hat{y}_{3} & =\alpha y_{2}+\alpha(1-\alpha) y_{1}+\alpha(1-\alpha)^{2} l_{0} \\
& =\alpha y_{2}+(1-\alpha) \hat{y}_{1}
\end{aligned}
$$

Exponential smoothing

Idea: give the largest weight to the most recent:

$$
\begin{aligned}
\hat{y}_{T+1}=\alpha y_{T} & +\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^{2} y_{T-2}+\ldots \\
& +\alpha^{T-1} y_{1}+\alpha^{T} I_{0}
\end{aligned}
$$

The forecast at $T=2$ is

$$
\hat{y}_{2}=\alpha y_{1}+\alpha(1-\alpha) l_{0}
$$

The forecast at $T=3$ is

$$
\begin{aligned}
\hat{y}_{3} & =\alpha y_{2}+\alpha(1-\alpha) y_{1}+\alpha(1-\alpha)^{2} l_{0} \\
& =\alpha y_{2}+(1-\alpha) \hat{y}_{1}
\end{aligned}
$$

at $T=4$ is

$$
\hat{y}_{4}=\alpha y_{3}+(1-\alpha) \hat{y}_{2}
$$

Exponential smoothing

Two forms of ES:

$$
\begin{aligned}
\hat{y}_{T+1} & =\alpha y_{T}+(1-\alpha) \hat{y}_{T} \\
& =\sum_{j=0}^{T-1} \alpha(1-\alpha)^{j} y_{T-j}+(1-\alpha)^{T} \iota_{0}
\end{aligned}
$$

where α, l_{0} is an initial value, are two parameters to be learned from the data $y_{1}, y_{2}, \ldots, y_{T}$

Learning parameters from the data

ES model:

$$
\hat{y}_{T+1}=\sum_{j=0}^{T-1} \alpha(1-\alpha)^{j} y_{T-j}+(1-\alpha)^{T} l_{0}
$$

From input data $y_{1}, y_{2}, \ldots, y_{T}$, we need to find α and I_{0} that minimize the SSE.

$$
\operatorname{SSE}\left(\alpha, l_{0}\right)=\sum_{t=1}^{T}\left(y_{t}-\hat{y}_{t}\right)^{2}
$$

This is a function of $\alpha, \alpha^{2}, \ldots, \alpha^{T}, I_{0}$, so not as easy to optimize as linear regression

Example: oil production in Saudi Arabia

Forecasts from SImple exponentlal smoothing

Learned ES parameters: $\hat{\alpha}=0.83$ and $\hat{l}_{0}=446.6$.

Holt's linear trend method

When there is a trend but no seasonality, use Holt's method Holt's method

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$
Level equation
Trend equation

$$
\ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)
$$

$$
b_{t}=\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1}
$$

There are 4 parameters here: α, β, ℓ_{0} and b_{0}.

Holt's linear trend method

Holt's method

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$

Level equation
Trend equation

$$
\ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)
$$

$$
b_{t}=\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1}
$$

- I_{t} is the level (estimate of y_{t}).
- b_{t} is the slope.
- Suppose that we have I_{t-1} and b_{t-1}.

Holt's linear trend method

Holt's method

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$

Level equation
Trend equation

$$
\begin{aligned}
& \ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
& b_{t}=\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1}
\end{aligned}
$$

- I_{t} is the "average" between y_{t} and $I_{t-1}+b_{t-1}$.
- Find $I_{t-1}+b_{t-1}$.

Holt's linear trend method

Holt's method

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$

Level equation
Trend equation

$$
\begin{aligned}
& \ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
& b_{t}=\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1}
\end{aligned}
$$

- I_{t} is the "average" between y_{t} and $I_{t-1}+b_{t-1}$.
- Find $I_{t-1}+b_{t-1}$.
- Then find I_{t}.

Holt's linear trend method

Holt's method

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$

Level equation
Trend equation

$$
\ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)
$$

$$
b_{t}=\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1}
$$

- b_{t} is the "average" between $I_{t}-I_{t-1}$ and b_{t-1}.
- Start the first forecast $\hat{y}_{t+1 \mid t}$.

Holt's linear trend method

$$
\hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}
$$

The forecast is a linear function of h.

Air passengers data

Year	Time	Observation	Level	Slope	Forecast
	t	y_{t}	ℓ_{t}	b_{t}	$y_{t \mid t-1}$
1989	0		15.57	2.102	
1990	1	17.55	17.57	2.102	17.67
1991	2	21.86	21.49	2.102	19.68
1992	3	23.89	23.84	2.102	23.59
1993	4	26.93	26.76	2.102	25.94
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
2016	27	72.60	72.50	2.102	72.02
	h				$\hat{y}_{t+h \mid t}$
	1				74.60
	2				76.70
	3				78.80
4				80.91	
					83.01

Damped Holt's method

- Linear trend is not realistic in many situations.
- Examples: Total factory output with a fixed number of machine.
Damped Holt's method (Gardner \& McKenzie, 1985)
Fix $0 \leq \phi \leq 1$

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+\left(\phi+\phi^{2}+\cdots+\phi^{h}\right) b_{t} \\
\ell_{t} & =\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1} .
\end{aligned}
$$

Damped Holt's method

- Linear trend is not realistic in many situations.
- Examples: Total factory output with a fixed number of machine.
Damped Holt's method (Gardner \& McKenzie, 1985)
Fix $0 \leq \phi \leq 1$

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+\left(\phi+\phi^{2}+\cdots+\phi^{h}\right) b_{t} \\
\ell_{t} & =\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1} .
\end{aligned}
$$

- $\phi=1 \rightarrow$ Holt's method
- $\phi=0 \rightarrow$ forecast with a constant
- In practice, $\phi \geq 0.8$.

Air passengers data

$$
\phi=0.9
$$

Forecasts from Holt's method

Forecast

Damped Holt's method
Holt's method

Holt-Winters' seasonal method

- Use this method when there is seasonality.

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+h b_{t}+s_{\mathrm{t}+\mathrm{h}-\mathrm{m}} \\
\ell_{t} & =\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1} \\
s_{t} & =\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}
\end{aligned}
$$

- Basically Holt's method + seasonality.
- m is the frequency of seasonality e.g. $m=12$ for monthly data.

Holt-Winters' seasonal method

- Use this method when there is seasonality.

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+h b_{t}+s_{\mathrm{t}+\mathrm{h}-\mathrm{m}} \\
\ell_{t} & =\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1} \\
s_{t} & =\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}
\end{aligned}
$$

- Basically Holt's method + seasonality.
- m is the frequency of seasonality e.g. $m=12$ for monthly data.
- I_{t} is the "average" between observation with seasonality removed $y_{t}-s_{t-m}$ and $I_{t-1}+b_{t-1}$.

Holt-Winters' seasonal method

- Use this method when there is seasonality.

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+h b_{t}+s_{\mathrm{t}+\mathrm{h}-\mathrm{m}} \\
\ell_{t} & =\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1} \\
s_{t} & =\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}
\end{aligned}
$$

- Basically Holt's method + seasonality.
- m is the frequency of seasonality e.g. $m=12$ for monthly data.
- I_{t} is the "average" between observation with seasonality removed $y_{t}-s_{t-m}$ and $I_{t-1}+b_{t-1}$.
- s_{t} is the "average" between observation with level and trend removed $y_{t}-I_{t-1}-b_{t-1}$ and the value of previous season s_{t-m}.

Holt-Winters' seasonal method

Holt-Winters' method

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+h b_{t}+s_{t-} \\
\ell_{t} & =\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1} \\
s_{t} & =\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}
\end{aligned}
$$

- s_{t+h-m} the latest seasonality in the data that has the same seasonal index (month, day of the week etc.) as $t+h$.

Holt-Winters' seasonal method

Holt-Winters' method

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+h b_{t}+s_{t-} \\
\ell_{t} & =\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1} \\
s_{t} & =\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}
\end{aligned}
$$

- s_{t+h-m} the latest seasonality in the data that has the same seasonal index (month, day of the week etc.) as $t+h$.
- For example, if $t=$ January, 2019, $h=2$, and $m=12$, then $t+h=$ March, 2019 and $t+h-m=$ March, 2018.

Holt-Winters' seasonal method

Holt-Winters' method

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+h b_{t}+s_{t-} \\
\ell_{t} & =\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(\ell_{t}-\ell_{t-1}\right)+(1-\beta) b_{t-1} \\
s_{t} & =\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}
\end{aligned}
$$

- s_{t+h-m} the latest seasonality in the data that has the same seasonal index (month, day of the week etc.) as $t+h$.
- For example, if $t=$ January, 2019, $h=2$, and $m=12$, then $t+h=$ March, 2019 and $t+h-m=$ March, 2018.
- There are a lot of parameters now: $\alpha, \beta, \gamma, \ell_{0}, b_{0}, s_{-m+1}$, s_{-m+2}, \ldots, s_{0}.

Holt-Winters' multiplicative method

We can replace

$$
\begin{aligned}
\text { add by } s_{t} & \rightarrow \text { multiply bys } s_{t} \\
\text { subtract by } s_{t} & \rightarrow \text { divide by } s_{t} .
\end{aligned}
$$

Holt-Winters' multiplicative method

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\left(\ell_{t}+h b_{t}\right) s_{t-} \\
\ell_{t} & =\alpha \frac{y_{t}}{s_{t-m}}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1} \\
s_{t} & =\gamma \frac{y_{t}}{\left(\ell_{t-1}+b_{t-1}\right)}+(1-\gamma) s_{t-m} .
\end{aligned}
$$

International visitors nights in Australia

International visitors nights in Australia

Forecasts using Holt-Winters' method

	t	y_{t}	ℓ_{t}	b_{t}	s_{t}	y_{t}
2004 Q1	-3				9.70	
2004 Q2	-2				-9.31	
2004 Q3	-1				-1.69	
2004 Q4	0		32.26	0.70	1.31	
2005 Q1	1	42.21	32.82	0.70	9.50	42.66
2005 Q2	2	24.65	33.66	0.70	-9.13	24.21
\vdots						
2015 Q4	44	66.06	63.22	0.70	2.35	64.22
	h					$y_{t+h \mid t}$
2016 Q1	1					76.10
2016 Q2	2					51.60
2016 Q3	3					63.97
2016 Q4	4					68.37
2017 Q1	5					78.90
2017 Q2	6					54.41

