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AutoRegressive Integrated Moving Average

(ARIMA)



Stationarity

A time series is stationary if its statistical
properties do not change over time.

What are statistical properties?

▶ mean

▶ variance

▶ covariance

▶ etc.



Stationarity

A time series is stationary if its statistical
properties do not change over time.

What are statistical properties?

▶ mean

▶ variance

▶ covariance

▶ etc.



Stationarity

More precise definition:

A time series is stationary if
the distribution of (Yt ,Yt+1, . . . ,Yt+s) does not depend on t.

▶ we usually don’t know the distribution of these variables.

▶ It is usually easier to detect that a time series is not
stationary by looking at its plot.
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Examples



Find stationarity from the plot

In summary, a time series is not stationary if there
is

▶ trend

▶ seasonality

▶ increase/decrease in variance



Random walk
Random walk is a simple non-stationary process.

yt = yt−1 + ϵt .

where ϵt is a white noise with zero mean and variance σ2 e.g.
ϵt ∼ N (0, σ2).
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Differencing

From the random walk

yt = yt−1 + ϵt ,

which is not stationary, we can transform it into

zt = yt − yt−1 = ϵt .

Now, zt is stationary.

In general, we try to make a stationary time series by
transforming zt = yt − yt−1. This is known as differencing.
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Second-order differencing

Second-order differencing
If differencing is not enough to make a time series stationary, we
do it twice.

z ′t = zt − zt−1 = zt − 2zt−1 + zt−2.

Seasonal differencing
To remove seasonality, we take the difference between an
observation and the previous observation from the same season.

zt = yt − yt−m,

where m is the length of seasonality e.g. m = 12 for annual
seasonality.
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Unit root
The random walk is an example of a time series that has a unit
root: the value of α in yt = αyt−1 + ϵt is α = 1.

In general, a time series is non-stationary if it has a unit root.
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Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

This is a test to see if we want differencing.

KPSS test

H0 : yt is stationary

Ha : yt is not stationary

If H0 is rejected (p−value < 0.05) then differencing yt is
required.
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Autocorrelation

Autocorrelation measures the linear relationship between a time
series and its lagged values.

Yt y1 . . . yk+1 . . . yt . . . yT
Yt−k → y1 . . . yt−k . . . yT−k . . . →

The autocorrelation at lag k, rk can be written as

rk =

∑T
t=k+1(yt − ȳ)(yt−k − ȳ)∑T

t=1(y − ȳ)2
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The values beyond blue lines are significantly different than zero.



Trend and seasonality in ACF plots

▶ When data have a trend, the autocorrelations for small lags
tend to be large and positive because observations nearby in
time are also nearby in size. So the ACF of trended time series
tend to have positive values that slowly decrease as the lags
increase.

▶ When data are seasonal, the autocorrelations will be larger for
the seasonal lags (at multiples of the seasonal frequency) than
for other lags.



Australian electricity demand
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Partial autocorrelation function (PACF)
Partial autocorrelation function measures the part of the
correlation that has not been explained by the earlier lags.
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Autoregressive model

An autoregressive model of order p, AR(p), is

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt ,

which is a multiple linear regression with yt−p, . . . , yt−1 as
predictors and yt as the responses variable.



Moving average model

A moving average model, MA(q), uses past errors to forecast.

yt = c + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q.



ARIMA model

AutoRegressive Integrated Moving Average (ARIMA) is a
combination of both AR and MA models:

y ′t = c + ϕ1y
′
t−1 + · · ·+ ϕpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt , (1)

where y ′t is the differenced series. Thus there are a total of p + q
predictors. We call this an ARIMA(p,d ,q) model.

The value of c and d have the following effects on the long-term
forecast.

c = 0 d = 0 forecasts go to zero.
c = 0 d = 1 forecasts go to a non-zero constant.
c = 0 d = 2 forecasts follow a straight line.
c ̸= 0 d = 0 forecasts go to the mean of the data.
c ̸= 0 d = 1 forecasts follow a straight line.
c ̸= 0 d = 2 forecasts follow a quadratic trend.
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Example: Quarterly US consumption
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Find p and q from ACF and PACF plots
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ACF and PACF plots of differenced data can help us find

▶ p in ARIMA(p, d , 0)

▶ q in ARIMA(0, d , q)

▶ Plots do not help for ARIMA(p, d , q) when p, q > 0 .



Find p and q from ACF and PACF plots
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The data may follow an ARIMA(p, d , 0) model if

▶ the ACF is exponentially decaying or sinusoidal

▶ there is a significant spike at lag p in the PACF, but none
beyond lag p.
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▶ the PACF is exponentially decaying or sinusoidal
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Model selection

We can also choose p, q, d by comparing the models’ “score”,
which measures how likely it is that the observed data is generated
from ARIMA(p, q, d)

Our “score” of ARIMA model is based on the likelihood

Likelihood = L = P(data|model)

The likelihood depends on the model. For time-series, the
likelihood can be very complicated
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Model selection
Choose p and q, find parameters and compute L = L(data|model).

There are three “scores” that we can use

▶ Akaike’s Information Criterion (AIC)

AIC = −2 log(L) + 2(p + q + k + 1),

where k = 1 if c ̸= 0 and k = 0 if c = 0.

▶ corrected AIC

AICc = AIC +
2(p + q + k + 1)(p + q + k + 2)

T − p − q − k − 2
,

where T is the number of observations in the data.

▶ Bayesian Information Criterion

BIC = AIC + [log(T )− 2](p + q + k + 1).
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Model selection

These scores follow the same concepts.

▶ Better model has higher likelihood.

▶ But model with too many parameters (high p + q) tends to
overfit and should be penalized.

We prefer AICc for ARIMA. The lower the score, the better.

Also check out seasonal ARIMA (this week’s lab).


