Unconstrained optimization
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General form of optimization
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Optimal solution:

r* =argmin f(z) st. x €
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General form of optimization

x* minimizes f over €:
flz) = f(z7), Vre
Optimal value:

= f(z") (if 2™ exists)



Examples

x* exists and is unique. \/ x* does not exist.
A
K\/)I / | -
F ] A
" Problem is "unbounded."

x* exists, but not unique. x* does not exist.
\/\/ \ e* *

f-o

=T
(S




Maximization
What if we want to maximize an objective function instead?
« Just multiply f by a minus sign:
max f(z) = —min — f(z)
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Unconstrained optimization: {2 = R"

Example 1: The Fermat-Weber problem

You have a list of loved ones who live in given locations in
Thailand. You would like to decide where to live so you are as
close to them all as possible; say, you want to minimize the
sum of distances to each person.

e cousinl
you?
* grandma

e mom
e dad

* sister e Cousin 3
e brother

e |overl e best friend ¢ |over?2



The Fermat-Weber problem

Location of person i:

Your location:

Problem:



Weighted sum of distances

Variant: also given weights w; for each person
(your mom says you should care more about her than lover 1)
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« As we’ll see later, this optimization problem is "easy” to
solve, because it has a nice structure (called convexity).
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The Fermat-Weber problem

« As we’ll see later, this optimization problem is "easy” to
solve, because it has a nice structure (called convexity).

- If you also wanted to be "far” from some of your friends
and family, this would have been a hard problem to solve!

« A tiny variation in the problem makes the problem much
harder.

« By the end of the course, you will learn techniques that will
help you make such distinctions.



Unconstrained optimization: {2 = R"

Example 2: Least squares
Given: m X n matrix

m X 1 vector
Solve: mingegn || Az — bH2

In expanded notation, we are solving:



Some applications

Data fitting



Some applications

Overdetermined system of linear equations
A linear predictor for a stock price of a company:
s(t): Stock price at day ¢

s(t) = ars(t — 1) + ags(t — 2) + azs(t — 3) + aqs(t — 4)

We have three months of daily stock price data to train our model (lots of
5-day windows). How to find the best a4, as, a3, ay for future prediction?
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Unconstrained local and global minima

Consider a function f : R* - R
A point z* is said to be a:
+ Local minimum: f(z*) < f(x) Va near z* (|| — x*|| small)
« Strict local minimum: f(z*) < f(x) Vo near x* (||z — x*|| small)

+ Global minimum: f(z*) < f(z) Vo € R"

« Strict global minimum: f(z*) < f(z) Vx € R®

Local/global maxima are defined analogously.



Example



« In general, finding local minima is easier than finding
global minima.



« In general, finding local minima is easier than finding
global minima.

« There are important problems where we can find global
minima efficiently.

« On the other hand, there are problems where finding even
a local minimum is intractable.
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Notation reminder

f(x) = f(x1,29,...,2) (f:R" = R)

af 01 0f

0y (%) (9_33% o 0x10x,
Vf(r)= 8fs Vif(x) = 5 :
o f of

Gradient vector Hessian matrix



First order condition

Theorem. (First Order Necessary Condition for
(Local) Optimality)

If £* is an unconstrained local minimizer of a
differentiable function f : R” — R, then we must
have:

Y\ Fermat
V@) =0 (1607-1665)



Remarks
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« Nevertheless, it is useful because any local minimum must
satisfy this condition. So, we can look for local (or global)
minima only among points that make the gradient of the
objective function vanish.



Remarks

« This condition is necessary but not sufficient for local
optimality.

« Nevertheless, it is useful because any local minimum must
satisfy this condition. So, we can look for local (or global)
minima only among points that make the gradient of the
objective function vanish.

« Terminology: A point x that satisfies V f(z) = 0 is called a
stationary point or a critical point of f. stationary point
or a critical point of
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Linear algebra review

Symmetric matrix: A = AT
Theorem. Eigenvalues of a real symmetric matrix are real.
A square matrix A is said to be

- Positive semidefinite (psd) if:

- Positive definite (pd) if:



Linear algebra review

Recall that when we talk of psd or pd, we can assume that our

matrix is symmetric: If A was not symmetric, we can replace A
AT + A

by 5

as.




Linear algebra review

Theorem. A matrix is positive semidefinite iff all its eigenvalues
are nonnegative. A matrix is positive definite iff all its
eigenvalues are positive.

Examples_:
Las
2. A= f .
3. A= _‘21 ;




Second order condition

Theorem. (Second Order Necessary Condition for (Local)
Optimality)

If 2* is an unconstrained local minimizer of a twice
continuously differentiable function f : R” — R, then, in
addition to V f(z*) = 0, we must have:

Vif(a) = 0

(i.e., the Hessian at x* is positive semidefinite.)



Second order condition

Theorem. (Second Order sufficient Condition for (Local)
Optimality)
Suppose f : R" — R is twice continuously differentiable,
Vf(z*)=0and

VZf(x*) =0
(i.e. the Hessian at x* is positive definite), then z* is a strict
local minimum of f.



Remarks

- Vf(z*) =0, Vif(z*) = 0is not sufficient for local
optimality.

flz) =2’

- V2f(x) = 0is not necessary for (even strict global)
optimality

f(z) =o'
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local solutions and certify their optimality?
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What are the questions in practice?

« How would we use all these optimality conditions to find
local solutions and certify their optimality?

- Is it easy to find points satisfying these conditions? e.g., is
it easy to solve Vf(x) =0?

« Suppose you found that a given point is locally optimal,
how would you go about checking if it is also globally
optimal?



Exercise: State the analogues of the three theorems for local
maxima.
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b m x 1vector
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Example 1: Least squares

Given: A m x n matrix (columns of A are independent)
b m x 1vector
Solve: min,cgn|| Az — b||?
Steps:
1. Write f(z) = ||Az — b]|? as inner product of vectors

2. Solve Vf(xz) =0 forx
3. Show that V2 f(z) = 2ATA =0



Example 2
Find all the local minima and maxima of the following function:

1
f(z) = ESC% + 2129 + 205 — 4oy — 4oy — 23

Vf(z)=0=



1
flx) = §x% + 21Ty + 205 — duy — day —

3
2
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flx) = §x% + 21Ty + 205 — duy — day —
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