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Examples



Maximization
What if we want to maximize an objective function instead?

• Just multiply f by a minus sign:
max f(x) = −min−f(x)
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Unconstrained optimization: Ω = Rn

Example 1: The Fermat-Weber problem
You have a list of loved ones who live in given locations in
Thailand. You would like to decide where to live so you are as
close to them all as possible; say, you want to minimize the
sum of distances to each person.



The Fermat-Weber problem
Location of person i:

Your location:

Problem:



Weighted sum of distances
Variant: also given weights wi for each person
(your mom says you should care more about her than lover 1)



The Fermat-Weber problem
• As we’ll see later, this optimization problem is ”easy” to
solve, because it has a nice structure (called convexity).

• If you also wanted to be ”far” from some of your friends
and family, this would have been a hard problem to solve!

• A tiny variation in the problem makes the problem much
harder.

• By the end of the course, you will learn techniques that will
help you make such distinctions.
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Unconstrained optimization: Ω = Rn

Example 2: Least squares
Given: m× n matrix

m× 1 vector

Solve: minx∈Rn∥Ax− b∥2

In expanded notation, we are solving:



Some applications
Data fitting



Some applications
Overdetermined system of linear equations
A linear predictor for a stock price of a company:
s(t): Stock price at day t

s(t) = a1s(t− 1) + a2s(t− 2) + a3s(t− 3) + a4s(t− 4)

We have three months of daily stock price data to train our model (lots of
5-day windows). How to find the best a1, a2, a3, a4 for future prediction?



Unconstrained local and global minima

Consider a function f : Rn → R
A point x∗ is said to be a:

• Local minimum: f(x∗) ≤ f(x) ∀x near x∗ (∥x− x∗∥ small)

• Strict local minimum: f(x∗) < f(x) ∀x near x∗ (∥x− x∗∥ small)

• Global minimum: f(x∗) ≤ f(x) ∀x ∈ Rn

• Strict global minimum: f(x∗) < f(x) ∀x ∈ Rn

Local/global maxima are defined analogously.
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Example



• In general, finding local minima is easier than finding
global minima.

• There are important problems where we can find global
minima efficiently.

• On the other hand, there are problems where finding even
a local minimum is intractable.
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Notation reminder

f(x) = f(x1, x2, . . . , xn) (f : Rn → R)

∇f(x) =


∂f

∂x1
(x)

...
∂f

∂xn
(x)

 ∇2f(x) =


∂2f

∂x21
· · · ∂2f

∂x1∂xn... ...
∂2f

∂xn∂x1
(x) · · · ∂f

∂x2n
(x)


Gradient vector Hessian matrix



First order condition

Theorem. (First Order Necessary Condition for
(Local) Optimality)
If x∗ is an unconstrained local minimizer of a
differentiable function f : Rn → R, then we must
have:

∇f(x∗) = 0



Remarks
• This condition is necessary but not sufficient for local
optimality.

• Nevertheless, it is useful because any local minimum must
satisfy this condition. So, we can look for local (or global)
minima only among points that make the gradient of the
objective function vanish.

• Terminology: A point x that satisfies ∇f(x) = 0 is called a
stationary point or a critical point of f . stationary point
or a critical point of
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Linear algebra review

Symmetric matrix: A = AT

Theorem. Eigenvalues of a real symmetric matrix are real.

A square matrix A is said to be
• Positive semidefinite (psd) if:

• Positive definite (pd) if:



Linear algebra review

Recall that when we talk of psd or pd, we can assume that our
matrix is symmetric: If A was not symmetric, we can replace A

by AT + A

2
as:

xTAx = xT
(
AT + A

2

)
x



Linear algebra review
Theorem. A matrix is positive semidefinite iff all its eigenvalues
are nonnegative. A matrix is positive definite iff all its
eigenvalues are positive.

Examples:

1. A =

[
2 4
4 5

]
2. A =

[
2 1
1 8

]
3. A =

[
4 2
2 1

]



Second order condition

Theorem. (Second Order Necessary Condition for (Local)
Optimality)
If x∗ is an unconstrained local minimizer of a twice
continuously differentiable function f : Rn → R, then, in
addition to ∇f(x∗) = 0, we must have:

∇2f(x∗) ⪰ 0

(i.e., the Hessian at x∗ is positive semidefinite.)



Second order condition

Theorem. (Second Order sufficient Condition for (Local)
Optimality)
Suppose f : Rn → R is twice continuously differentiable,
∇f(x∗) = 0 and

∇2f(x∗) ≻ 0

(i.e. the Hessian at x∗ is positive definite), then x∗ is a strict
local minimum of f .



Remarks
• ∇f(x∗) = 0, ∇2f(x∗) ⪰ 0 is not sufficient for local
optimality.

f(x) = x3

• ∇2f(x) ≻ 0 is not necessary for (even strict global)
optimality

f(x) = x4



What are the questions in practice?

• How would we use all these optimality conditions to find
local solutions and certify their optimality?

• Is it easy to find points satisfying these conditions? e.g., is
it easy to solve ∇f(x) = 0?

• Suppose you found that a given point is locally optimal,
how would you go about checking if it is also globally
optimal?
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Exercise: State the analogues of the three theorems for local
maxima.



Example 1: Least squares

Given: A m× n matrix (columns of A are independent)

b m× 1 vector

Solve: minx∈Rn∥Ax− b∥2

Steps:
1. Write f(x) = ∥Ax− b∥2 as inner product of vectors
2. Solve ∇f(x) = 0 for x
3. Show that ∇2f(x) = 2ATA ≻ 0



Example 1: Least squares

Given: A m× n matrix (columns of A are independent)

b m× 1 vector

Solve: minx∈Rn∥Ax− b∥2

Steps:
1. Write f(x) = ∥Ax− b∥2 as inner product of vectors
2. Solve ∇f(x) = 0 for x
3. Show that ∇2f(x) = 2ATA ≻ 0



Example 2
Find all the local minima and maxima of the following function:

f(x) =
1

2
x21 + x1x2 + 2x22 − 4x1 − 4x2 − x32

∇f(x) =

∇f(x) = 0 ⇒
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