Gradient descent methods

Source: Ahmadi, ORF 363 slides.



Last time we learned how to optimize scalar functions
min f(x) f:R—>R
x

In this lecture, we are going to solve unconstrained convex
problem
min f(z) f:R"—=R
X



What do we know about convex functions?

« A stationary point (a point where the gradient vanishes) is
a local minimum, which is automatically a global minimum

« How can we find a stationary point?



What do we know about convex functions?

« A stationary point (a point where the gradient vanishes) is
a local minimum, which is automatically a global minimum

« How can we find a stationary point?

« We now begin to see some algorithms for this purpose,
starting with gradient descent algorithms

- These are iterative algorithms: start at a point, jump to a
new point that has a lower objective value and continue.



General form of the iterations

Tht1 = T + opdy

- k=1,2,3,...
.z € R™: current point
- Tr4+1 € R™: next point



General form of the iterations

Tht1 = T + opdy

- k=1,2,3,...

.z € R™: current point

- Tr4+1 € R™: next point

. dj € R™: direction to move along
. ap € R: step size

Goal: choose d;, and a4, so that f(zy+1) < f(xk)



Gradient methods

Tpt1 = T + opdy

« The direction d; to move along at step k is chosen based
on "information” from V f(z},)

« Why is V f(z},) a natural vector to look at? Lemmas 1 and
2 below provide two reasons



Why V f(z)?

Lemma 1. Consider yourself sitting at a point z € R” and
looking at the value of the function f in all directions around
you. The direction with the maximum rate of decrease is along

—Vf(x)



Why V f(z)?

Lemma 2. Consider a point x € R". For a direction d that
satisfies

Vf(x)'d <o,

there exists a small & > 0 such that f(z + ad) < f(x). In
particular, we can choose d = —V f(z)



Why V f(z)?

Lemma 2. Consider a point x € R". For a direction d that
satisfies
Vf(x)'d <0,

there exists a small & > 0 such that f(z + ad) < f(x). In
particular, we can choose d = —V f(z)

Remark. The condition V f(z)Td < 0 means that the vectors
f(x) and d make an angle of more than 90 degrees, since
Vi(@)td=|lf(@)|lld] cos(6)






General form of gradient descent

Lemma 3. Consider any positive definite matrix B. For any

point with V f(z) # 0, the direction —BV f(z) is a descent
direction



General form of gradient descent

Lemma 3. Consider any positive definite matrix B. For any
point with V f(z) # 0, the direction —BV f(z) is a descent
direction

This suggests that a general form of our descent algorithms:

Thyl1 = T — oszka(:L'k) B, -0



Common choices of descent direction

Thyl = T — CkkBk;Vf(xk) B, >0

- Steepest descent: B, = [ for all k
. Simplest descent direction but not always the fastest



Common choices of descent direction

Thyl = T — CkkBk;Vf(xk) B, >0

- Steepest descent: B, = [ for all k
. Simplest descent direction but not always the fastest

- Newton Direction: B, = (V2f(x;))~! (assuming Hessian
positive definite)
. More expensive, but can have much faster convergence



Common choices of descent direction

Tit1 = — BV f(zr) B >0

- Diagonally Scaled Steepest Descent:
By, = diag(dix, dog, - - ., dni) where all d;, > 0

. For example, can take d, , = <62f—f§’“)> i.e., diagonally

0
approximate Newton.



Common choices of descent direction

Tit1 = — BV f(zr) B >0

- Diagonally Scaled Steepest Descent:
By, = diag(dix, dog, - - ., dni) where all d;, > 0
. For example, can take d, , = <%> i.e., diagonally

approximate Newton.

- Modified Newton Direction: B, = (V2f(xq))™}
. Compute Newton direction only at the beginning, or once every
M steps



Common choices of the step size oy,

Back to the general form of our iterative algorithm
Tpe1 = T + agdy,
- Constant step size: a; = s for all k£ (s > 0)

. Simplest rule to implement, but may not converge if too large;
may be too slow if too small



Common choices of the step size oy,

Back to the general form of our iterative algorithm

Tpt1 = T + opdy

- Constant step size: a; = s for all k£ (s > 0)
. Simplest rule to implement, but may not converge if too large;
may be too slow if too small

. e o . . . o0 1 . . 1
- Diminishing step size: o, — 0, ,_, o =ooleg o =1)
. Descent not guaranteed at each step; only later when becomes
small

N ,j"_l L imposed to guarantee progress does not become too
1 ap
slow



Common choices of the step size oy,

T+l = T + opdy

« Exact line search: o = argmin,, f(x; + ady)
. A minimization problem itself, but an easier one (one
dimensional)

. If f is convex, the minimization problem is also convex (why?)
. Can use methods that we learned in the previous lecture



Common choices of the step size oy,

Tht1 = T + opdy

« Exact line search: o = argmin,, f(x; + ady)
. A minimization problem itself, but an easier one (one
dimensional)

. If f is convex, the minimization problem is also convex (why?)
. Can use methods that we learned in the previous lecture

- Limited exact line search: oy, = argmin, ¢y, f(zx + ady)
. Same as above, but tries not to step to far



Illustration of exact line search

\



Stopping criteria

« Once we have a rule for choosing the search direction and
the step size, we are good to go for running the algorithm.

« Typically the initial point is picked randomly, or if we have
a guess for the location of local minima, we pick close to
them

« But when to stop the algorithm?



Stopping criteria

Some common choices (e > 0 is a small prescribed threshold):

o [[Vf(zes1)l| <€

. This means that we have found a point that is close to a
stationary point (V f(z) = 0)
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stationary point (V f(z) = 0)

o |f(zrg) = flzp)| <€

. Improvement in function has become small



Stopping criteria

Some common choices (e > 0 is a small prescribed threshold):

o [[Vf(zes1)l| <€

. This means that we have found a point that is close to a
stationary point (V f(z) = 0)

o |f(zrg) = flzp)| <€

. Improvement in function has become small

o rpp — x| <e

. Movement between iterations has become small



Stopping criteria

Some common choices (¢ > 0 is a small prescribed threshold):

. |f(wp11) — flan)]
max{L, | f(zx)[}
. A "relative” measure - removes dependence on the scale of f
. The max is taken to avoid dividing by small numbers

<€




Stopping criteria

Some common choices (¢ > 0 is a small prescribed threshold):

. |f(wp11) — flan)]
max{L, | f(zx)[}
. A "relative” measure - removes dependence on the scale of f
. The max is taken to avoid dividing by small numbers

<€

|Try1 — 2]

— Yy <€
max{L, [|zx([}

. Same as above - removes dependence on the scale of z;,



Example

min f(z) = 523 + a5 +4x179 — 631 — 439+ 15

This is a convex function - Any stationary
point must be the unique global
minimizer

Let’s try the steepest descent method:
dp = =V f(zy)
ay: get from exact line search

2o = (0,10)7
Stopping criterion: ||V f(x)|| < 107
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Convergence

We say that the algorithm converges if x;, approaches a single
point x*



Convergence

We say that the algorithm converges if x;, approaches a single
point x*

Theorem. Consider the sequence generated by any descent
algorithm with d, = — B,V f(z},) such that eigenvalues of By,
are larger than some m for all £ and the step size is chosen
according to the exact line search, or the limited exact line
search. Then, the algorithm converges to a stationary point



Rates of convergence

« Once we know an iterative algorithm converges, the next
question is how fast?

« For example, if |f(zg) — f(2")] = W then sure, this
difference will eventually go to zero, but it will take years to
go even below 0.1,



Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277
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Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

. Larger p = faster convergence

. For the same p, smaller v = faster convergence

. If {1} converges with order p, it also converges with any order
pP<p

. If {z}} converges with factor ~, it also converges with any factor
V=



Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

. Larger p = faster convergence

. For the same p, smaller v = faster convergence

. If {1} converges with order p, it also converges with any order
P <p

. If {z}} converges with factor ~, it also converges with any factor
vz

. So we typically look for the largest p and the smallest v for which
the inequality holds



Rates of convergence

Definition. Let {z;} converge to x*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough £,

[z rr = 27} < Az = 277

Some more terminology:
. Linear convergence: p=1andy< 1
. Sublinear convergence: p=1andy =1
. Superlinear convergence: p > 1
. Quadratic convergence: p = 2



Rates of convergence

Linear convergence: p=1and v < 1
Why is it called linear convergence?
For k large enough, we have

ke — 27 < Vwrser — 271 <V llTnsen — 2" < -



Rates of convergence

Linear convergence: p=1and v < 1
Why is it called linear convergence?
For k large enough, we have

[@pre — || < A Tppe1 — 2| < AP Tppen — 2| < o0 <A — 27



Rates of convergence

Linear convergence: p=1and v < 1
Why is it called linear convergence?
For k large enough, we have
e = 2| < Ypremr — 2| < VP ppemz — 27 < -0 <Al — 27
Taking log on both sides,
logl|se — 2| < log [y — &"|]] = £logy + logl|a, — o

— log||zk+¢ — z*||, which measures the number of correct significant digits in
Tr+e 8rows linearly with ¢



Examples

|z, — 2*|| ~ a*,0 < a < 1 linear convergence




Examples

|z, — 2*|| ~ a*,0 < a < 1 linear convergence

e ||zx — 2*|| ~ «¥ quadratic convergence

« Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration



Examples

|zx — 2*]] = a*,0 < a < 1 linear convergence

|z — z*|| &~ a®" quadratic convergence

Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration

|z — 2*|| ~ 1 sublinear convergence



Convergence rate of steepest descent for quadratic
functions

Theorem. Consider a quadratic function

1
f(x):ExTQa:erquLc Q>0
Let m and M be the smallest and largest eigenvalue of (). Then
the sequence {f(x;)} generated by the steepest descent
algorithm with exact line search converges to the unique global
minimum of f, where the convergence is linear (p = 1), and

with factor ~ = (%1%)2




Remarks

. k=Y s called condition
number of the matrix ()
. Appears often in numeric

analysis
—m\2 _1\2
« Grm) = (51)

« We want « close to 1 for
fast convergence



Remarks

. k=Y s called condition

number of the matrix ()

m 2 . *
. Appears often in numeric a (%—m) ki |z —a*]| <0.1
analysis 11 0.002 1
3 025 2
10 067 6
. (Mf _ (H_4)2 100  0.96 58
Mm S 200 0.8 116
400 0.99 231

« We want « close to 1 for
fast convergence
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Beyond quadratic case

What if the function f we are minimizing is not quadratic?
 Let 2* be the optimal solution

« Using the Taylor series, f can be approximated by a
quadratic:

1
§xTV2f(a;*)ac (plus linear and constant terms)

- Hence, the condition number x of the Hessian V2 f(z*)
dictates convergence rate



