Gradient descent methods

Source: Ahmadi, ORF 363 slides.

Last time we learned how to optimize scalar functions
min f(x) f:R—>R
x

In this lecture, we are going to solve unconstrained convex
problem
min f(z) f:R"—=R
X

What do we know about convex functions?

« A stationary point (a point where the gradient vanishes) is
a local minimum, which is automatically a global minimum

« How can we find a stationary point?

What do we know about convex functions?

« A stationary point (a point where the gradient vanishes) is
a local minimum, which is automatically a global minimum

« How can we find a stationary point?

« We now begin to see some algorithms for this purpose,
starting with gradient descent algorithms

- These are iterative algorithms: start at a point, jump to a
new point that has a lower objective value and continue.

General form of the iterations

Tht1 = T + opdy

- k=1,2,3,...
.z € R™: current point
- Tr4+1 € R™: next point

General form of the iterations

Tht1 = T + opdy

- k=1,2,3,...

.z € R™: current point

- Tr4+1 € R™: next point

. dj € R™: direction to move along
. ap € R: step size

Goal: choose d;, and a4, so that f(zy+1) < f(xk)

Gradient methods

Tpt1 = T + opdy

« The direction d; to move along at step k is chosen based
on "information” from V f(z},)

« Why is V f(z},) a natural vector to look at? Lemmas 1 and
2 below provide two reasons

Why V f(z)?

Lemma 1. Consider yourself sitting at a point z € R” and
looking at the value of the function f in all directions around
you. The direction with the maximum rate of decrease is along

—Vf(x)

Why V f(z)?

Lemma 2. Consider a point x € R". For a direction d that
satisfies

Vf(x)'d <o,

there exists a small & > 0 such that f(z + ad) < f(x). In
particular, we can choose d = —V f(z)

Why V f(z)?

Lemma 2. Consider a point x € R". For a direction d that
satisfies
Vf(x)'d <0,

there exists a small & > 0 such that f(z + ad) < f(x). In
particular, we can choose d = —V f(z)

Remark. The condition V f(z)Td < 0 means that the vectors
f(x) and d make an angle of more than 90 degrees, since
Vi(@)td=|lf(@)|lld] cos(6)

General form of gradient descent

Lemma 3. Consider any positive definite matrix B. For any

point with V f(z) # 0, the direction —BV f(z) is a descent
direction

General form of gradient descent

Lemma 3. Consider any positive definite matrix B. For any
point with V f(z) # 0, the direction —BV f(z) is a descent
direction

This suggests that a general form of our descent algorithms:

Thyl1 = T — oszka(:L'k) B, -0

Common choices of descent direction

Thyl = T — CkkBk;Vf(xk) B, >0

- Steepest descent: B, = [for all k
. Simplest descent direction but not always the fastest

Common choices of descent direction

Thyl = T — CkkBk;Vf(xk) B, >0

- Steepest descent: B, = [for all k
. Simplest descent direction but not always the fastest

- Newton Direction: B, = (V2f(x;))~! (assuming Hessian
positive definite)
. More expensive, but can have much faster convergence

Common choices of descent direction

Tit1 = — BV f(zr) B >0

- Diagonally Scaled Steepest Descent:
By, = diag(dix, dog, - - ., dni) where all d;, > 0

. For example, can take d, , = <62f—f§’“)> i.e., diagonally

0
approximate Newton.

Common choices of descent direction

Tit1 = — BV f(zr) B >0

- Diagonally Scaled Steepest Descent:
By, = diag(dix, dog, - - ., dni) where all d;, > 0
. For example, can take d, , = <%> i.e., diagonally

approximate Newton.

- Modified Newton Direction: B, = (V2f(xq))™}
. Compute Newton direction only at the beginning, or once every
M steps

Common choices of the step size oy,

Back to the general form of our iterative algorithm
Tpe1 = T + agdy,
- Constant step size: a; = s for all k£ (s > 0)

. Simplest rule to implement, but may not converge if too large;
may be too slow if too small

Common choices of the step size oy,

Back to the general form of our iterative algorithm

Tpt1 = T + opdy

- Constant step size: a; = s for all k£ (s > 0)
. Simplest rule to implement, but may not converge if too large;
may be too slow if too small

. e o . . . o0 1 . . 1
- Diminishing step size: o, — 0, ,_, o =ooleg o =1)
. Descent not guaranteed at each step; only later when becomes
small

N ,j"_l L imposed to guarantee progress does not become too
1 ap
slow

Common choices of the step size oy,

T+l = T + opdy

« Exact line search: o = argmin,, f(x; + ady)
. A minimization problem itself, but an easier one (one
dimensional)

. If f is convex, the minimization problem is also convex (why?)
. Can use methods that we learned in the previous lecture

Common choices of the step size oy,

Tht1 = T + opdy

« Exact line search: o = argmin,, f(x; + ady)
. A minimization problem itself, but an easier one (one
dimensional)

. If f is convex, the minimization problem is also convex (why?)
. Can use methods that we learned in the previous lecture

- Limited exact line search: oy, = argmin, ¢y, f(zx + ady)
. Same as above, but tries not to step to far

Illustration of exact line search

\

Stopping criteria

« Once we have a rule for choosing the search direction and
the step size, we are good to go for running the algorithm.

« Typically the initial point is picked randomly, or if we have
a guess for the location of local minima, we pick close to
them

« But when to stop the algorithm?

Stopping criteria

Some common choices (e > 0 is a small prescribed threshold):

o [[Vf(zes1)l| <€

. This means that we have found a point that is close to a
stationary point (V f(z) = 0)

Stopping criteria

Some common choices (e > 0 is a small prescribed threshold):

o [[Vf(zes1)l| <€

. This means that we have found a point that is close to a
stationary point (V f(z) = 0)

o |f(zrg) = flzp)| <€

. Improvement in function has become small

Stopping criteria

Some common choices (e > 0 is a small prescribed threshold):

o [[Vf(zes1)l| <€

. This means that we have found a point that is close to a
stationary point (V f(z) = 0)

o |f(zrg) = flzp)| <€

. Improvement in function has become small

o rpp — x| <e

. Movement between iterations has become small

Stopping criteria

Some common choices (¢ > 0 is a small prescribed threshold):

. |f(wp11) — flan)]
max{L, | f(zx)[}
. A "relative” measure - removes dependence on the scale of f
. The max is taken to avoid dividing by small numbers

<€

Stopping criteria

Some common choices (¢ > 0 is a small prescribed threshold):

. |f(wp11) — flan)]
max{L, | f(zx)[}
. A "relative” measure - removes dependence on the scale of f
. The max is taken to avoid dividing by small numbers

<€

|Try1 — 2]

— Yy <€
max{L, [|zx([}

. Same as above - removes dependence on the scale of z;,

Example

min f(z) = 523 + a5 +4x179 — 631 — 439+ 15

This is a convex function - Any stationary
point must be the unique global
minimizer

Let’s try the steepest descent method:
dp = =V f(zy)
ay: get from exact line search

2o = (0,10)7
Stopping criterion: ||V f(x)|| < 107

K

%k

7 Fxy)

“V'Hiu]”

B¢y

£

S
1.000000000000008 © o 1o, £ 16, " 37.576509456111871 0,085971748560497 75.000000000000000
2. -3, 5 £.62£452021432051 -0.732586458840725 1.556 1. 2.715384615384604 14.303045445680257
3.000000000000000 -0.S33785154681707 4.397787271909798 7.251794590872171 1.053437775087788 2.488116719234757 0.085971742660437 10.784883730751091
4.000000000000000 -1,1273331683106014 4. 45416 -0.048507870278480 0,103070243466774 0.113922538532801 2.715324615384754 10.018870072128351
5.000000000000000 -0.2956156339BAZ4E 4. 026306196070238 0.145068444398068 0.0T0149856187323 0.184748617262910 0.0BES71748860457 10.001248473246101
§.000000000000000 -1,008431308823290 4,020275290265531 -0.003211927170778 0,006825345237901 0.007543329090456 2.715324615384132 10.000082733302873
7.000000000000000 -0.098709691108026 4.001741852811848 0.000870490267134 0.00£644040891503 0.01090881437608¢ 0.085071748660486 10.0000054781£8033
§.000000000000000 -1,000558275280174 4.001342519126133 -0.000212676297206 0,000451937131571 0.000499176105912 2.715381615432194 10.0000003627330849
9. -0.209 334 4.000115335091923 0.000653570620062 0.000307562645155 0.000722322183848 0.085071748660553 10.000000024018206
10.000000000000000 -1.00003§965943830 4.000088894793997 -0.000014087264316 0.000029379811672 0.000033077715677 7.715384615356878 10.000000001530355
11, -0.999396727179936 ¢,000007636920263 0.000043275361489 0,000020365120705 0.000047528234975 0.083971748657113 10.000000000105302
1206 -1, s7683163 4 -0.000000832480728 0.000001881457800 0_000002188884831 —0.68215£863782812 10.000000000006872
13, -1, 4.000007257574842 -0.000001900553979 0,000002142806345 0.00000256421595¢ 0.644738427673033 10.000000000010715
14.000000000000000 -1.000001867725151 4.000005876029858 O, 328 0. 1147918 0. 451871706 0.095T03098047471 10.000800000808070
15. -1.000002329669066 4. 304932 -0.000001431470952 0.000001€13933592 0.0000D2157287817 0.64473B43076B04E 10.0000DEDCDODENTI
16.000000000000000 -1.000001406744733 <. Tissze 0. 12357 0.000003224500811 0. 7 0.09570 3 10. 76
17.000000000000000 -1.000001754674455 4.00000411714521% -0.000001078164111 0.000001715557444 0.000001624835327 0.544738478827084 10.000000000003446
18. -1.0000010595 4,000003333406057 0.000002736217588 0. o 78381 0.095 10. 7
18.0 -1.000001321596548 4.00000310057679% -0.000000812058286 0.000000$1556T405 ©0.000001223806483 —0.251801315258450 10.000000000001959
20.000000000000000 -1.000001526073893 ¢.000003331517376 -0.000001934667¢2¢ 0.000000553740161 0.000002015734985 0.1 TE62 10. 205
21.000000000000000 -1.000001253482323 4.00000325278516% 0.000000476257405 0.000001451621026 0.000001565807307 0.241 77 10, 125
22.000000000000000 -1.000001368725976 4,00000289184750% -0.000002119708727 0,000000308871113 0.000002142094930 0.11550872336004% 10.000000000001897
23.000000000000000 -1.000001123680298 4.000002856182403 0.000000187827231 0.000001217603853 0.000001232005768 0.511B3B030938667 10.000000000001631
24.000000000000000 0D0001219939628 _ 4.000002232893383 -0.000003266912726 -0.000000413567736 0.00000325906028 0,092256931075945 10.000000000001528

25.000000000000000

1

35878 DO0002271048705

»

X

-0.000000100264955

0.000000863315498

o DUDG005T40E317E

0.000000808100000

L
)

Convergence

We say that the algorithm converges if x;, approaches a single
point x*

Convergence

We say that the algorithm converges if x;, approaches a single
point x*

Theorem. Consider the sequence generated by any descent
algorithm with d, = — B,V f(z},) such that eigenvalues of By,
are larger than some m for all £ and the step size is chosen
according to the exact line search, or the limited exact line
search. Then, the algorithm converges to a stationary point

Rates of convergence

« Once we know an iterative algorithm converges, the next
question is how fast?

« For example, if |f(zg) — f(2")] = W then sure, this
difference will eventually go to zero, but it will take years to
go even below 0.1,

Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

. Larger p = faster convergence

Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

. Larger p = faster convergence
. For the same p, smaller v = faster convergence

Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

. Larger p = faster convergence
. For the same p, smaller v = faster convergence
. If {1} converges with order p, it also converges with any order
/
pP<p

Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

. Larger p = faster convergence

. For the same p, smaller v = faster convergence

. If {1} converges with order p, it also converges with any order
pP<p

. If {z}} converges with factor ~, it also converges with any factor
V=

Rates of convergence

Definition. Let {x;} converge to z*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough &,

2y = 27} < Al — 277

. Larger p = faster convergence

. For the same p, smaller v = faster convergence

. If {1} converges with order p, it also converges with any order
P <p

. If {z}} converges with factor ~, it also converges with any factor
vz

. So we typically look for the largest p and the smallest v for which
the inequality holds

Rates of convergence

Definition. Let {z;} converge to x*. We say the convergence is
of order p(> 1) and with factor (> 0), if for large enough £,

[z rr = 27} < Az = 277

Some more terminology:
. Linear convergence: p=1andy< 1
. Sublinear convergence: p=1andy =1
. Superlinear convergence: p > 1
. Quadratic convergence: p = 2

Rates of convergence

Linear convergence: p=1and v < 1
Why is it called linear convergence?
For k large enough, we have

ke — 27 < Vwrser — 271 <V llTnsen — 2" < -

Rates of convergence

Linear convergence: p=1and v < 1
Why is it called linear convergence?
For k large enough, we have

[@pre — || < A Tppe1 — 2| < AP Tppen — 2| < o0 <A — 27

Rates of convergence

Linear convergence: p=1and v < 1
Why is it called linear convergence?
For k large enough, we have
e = 2| < Ypremr — 2| < VP ppemz — 27 < -0 <Al — 27
Taking log on both sides,
logl|se — 2| < log [y — &"|]] = £logy + logl|a, — o

— log||zk+¢ — z*||, which measures the number of correct significant digits in
Tr+e 8rows linearly with ¢

Examples

|z, — 2*|| ~ a*,0 < a < 1 linear convergence

Examples

|z, — 2*|| ~ a*,0 < a < 1 linear convergence

e ||zx — 2*|| ~ «¥ quadratic convergence

« Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration

Examples

|zx — 2*]] = a*,0 < a < 1 linear convergence

|z — z*|| &~ a®" quadratic convergence

Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration

|z — 2*|| ~ 1 sublinear convergence

Convergence rate of steepest descent for quadratic
functions

Theorem. Consider a quadratic function

1
f(x):ExTQa:erquLc Q>0
Let m and M be the smallest and largest eigenvalue of (). Then
the sequence {f(x;)} generated by the steepest descent
algorithm with exact line search converges to the unique global
minimum of f, where the convergence is linear (p = 1), and

with factor ~ = (%1%)2

Remarks

. k=Y s called condition
number of the matrix ()
. Appears often in numeric

analysis
—m\2 _1\2
« Grm) = (51)

« We want « close to 1 for
fast convergence

Remarks

. k=Y s called condition

number of the matrix ()

m 2 . *
. Appears often in numeric a (%—m) ki |z —a*]| <0.1
analysis 11 0.002 1
3 025 2
10 067 6
. (Mf _ (H_4)2 100 0.96 58
Mm S 200 0.8 116
400 0.99 231

« We want « close to 1 for
fast convergence

mmmmmm

E?f/,’l',
7
\

7

)

) /

/,///« 7
7 7 7

Beyond quadratic case

What if the function f we are minimizing is not quadratic?
 Let 2* be the optimal solution

« Using the Taylor series, f can be approximated by a
quadratic:

1
§xTV2f(a;*)ac (plus linear and constant terms)

- Hence, the condition number x of the Hessian V2 f(z*)
dictates convergence rate

