
Gradient descent methods

Source: Ahmadi, ORF 363 slides.

Last time we learned how to optimize scalar functions

min
x

f(x) f : R → R

In this lecture, we are going to solve unconstrained convex
problem

min
x

f(x) f : Rn → R

What do we know about convex functions?
• A stationary point (a point where the gradient vanishes) is
a local minimum, which is automatically a global minimum

• How can we find a stationary point?

• We now begin to see some algorithms for this purpose,
starting with gradient descent algorithms

• These are iterative algorithms: start at a point, jump to a
new point that has a lower objective value and continue.

What do we know about convex functions?
• A stationary point (a point where the gradient vanishes) is
a local minimum, which is automatically a global minimum

• How can we find a stationary point?

• We now begin to see some algorithms for this purpose,
starting with gradient descent algorithms

• These are iterative algorithms: start at a point, jump to a
new point that has a lower objective value and continue.

General form of the iterations

xk+1 = xk + αkdk

• k = 1, 2, 3, . . .

• xk ∈ Rn: current point
• xk+1 ∈ Rn: next point

• dk ∈ Rn: direction to move along
• αk ∈ R: step size

Goal: choose dk and αk so that f(xk+1) < f(xk)

General form of the iterations

xk+1 = xk + αkdk

• k = 1, 2, 3, . . .

• xk ∈ Rn: current point
• xk+1 ∈ Rn: next point
• dk ∈ Rn: direction to move along
• αk ∈ R: step size

Goal: choose dk and αk so that f(xk+1) < f(xk)

Gradient methods

xk+1 = xk + αkdk

• The direction dk to move along at step k is chosen based
on ”information” from ∇f(xk)

• Why is ∇f(xk) a natural vector to look at? Lemmas 1 and
2 below provide two reasons

Why ∇f (x)?
Lemma 1. Consider yourself sitting at a point x ∈ Rn and
looking at the value of the function f in all directions around
you. The direction with the maximum rate of decrease is along
−∇f(x)

Why ∇f (x)?
Lemma 2. Consider a point x ∈ Rn. For a direction d that
satisfies

∇f(x)Td < 0,

there exists a small α > 0 such that f(x+ αd) < f(x). In
particular, we can choose d = −∇f(x)

Remark. The condition ∇f(x)Td < 0 means that the vectors
f(x) and d make an angle of more than 90 degrees, since
∇f(x)Td = ∥f(x)∥∥d∥ cos(θ)

Why ∇f (x)?
Lemma 2. Consider a point x ∈ Rn. For a direction d that
satisfies

∇f(x)Td < 0,

there exists a small α > 0 such that f(x+ αd) < f(x). In
particular, we can choose d = −∇f(x)

Remark. The condition ∇f(x)Td < 0 means that the vectors
f(x) and d make an angle of more than 90 degrees, since
∇f(x)Td = ∥f(x)∥∥d∥ cos(θ)

General form of gradient descent
Lemma 3. Consider any positive definite matrix B. For any
point with ∇f(x) ̸= 0, the direction −B∇f(x) is a descent
direction

General form of gradient descent

Lemma 3. Consider any positive definite matrix B. For any
point with ∇f(x) ̸= 0, the direction −B∇f(x) is a descent
direction

This suggests that a general form of our descent algorithms:

xk+1 = xk − αkBk∇f(xk) Bk ≻ 0

Common choices of descent direction

xk+1 = xk − αkBk∇f(xk) Bk ≻ 0

• Steepest descent: Bk = I for all k
• Simplest descent direction but not always the fastest

• Newton Direction: Bk = (∇2f(xk))
−1 (assuming Hessian

positive definite)
• More expensive, but can have much faster convergence

Common choices of descent direction

xk+1 = xk − αkBk∇f(xk) Bk ≻ 0

• Steepest descent: Bk = I for all k
• Simplest descent direction but not always the fastest

• Newton Direction: Bk = (∇2f(xk))
−1 (assuming Hessian

positive definite)
• More expensive, but can have much faster convergence

Common choices of descent direction

xk+1 = xk − αkBk∇f(xk) Bk ≻ 0

• Diagonally Scaled Steepest Descent:
Bk = diag(d1,k, d2,k, . . . , dn,k) where all di,k > 0

• For example, can take di,k =
(

∂2f(xk)

∂x2
i

)
i.e., diagonally

approximate Newton.

• Modified Newton Direction: Bk = (∇2f(x0))
−1

• Compute Newton direction only at the beginning, or once every
M steps

Common choices of descent direction

xk+1 = xk − αkBk∇f(xk) Bk ≻ 0

• Diagonally Scaled Steepest Descent:
Bk = diag(d1,k, d2,k, . . . , dn,k) where all di,k > 0

• For example, can take di,k =
(

∂2f(xk)

∂x2
i

)
i.e., diagonally

approximate Newton.

• Modified Newton Direction: Bk = (∇2f(x0))
−1

• Compute Newton direction only at the beginning, or once every
M steps

Common choices of the step size αk

Back to the general form of our iterative algorithm
xk+1 = xk + αkdk

• Constant step size: αk = s for all k (s > 0)
• Simplest rule to implement, but may not converge if too large;
may be too slow if too small

• Diminishing step size: αk → 0,
∑∞

k=1
1
αk

= ∞ (e.g. αk =
1
k)

• Descent not guaranteed at each step; only later when becomes
small

•

∑∞
k=1

1
αk

imposed to guarantee progress does not become too
slow

Common choices of the step size αk

Back to the general form of our iterative algorithm
xk+1 = xk + αkdk

• Constant step size: αk = s for all k (s > 0)
• Simplest rule to implement, but may not converge if too large;
may be too slow if too small

• Diminishing step size: αk → 0,
∑∞

k=1
1
αk

= ∞ (e.g. αk =
1
k)

• Descent not guaranteed at each step; only later when becomes
small

•

∑∞
k=1

1
αk

imposed to guarantee progress does not become too
slow

Common choices of the step size αk

xk+1 = xk + αkdk

• Exact line search: αk = argminα f(xk + αdk)
• A minimization problem itself, but an easier one (one
dimensional)

• If f is convex, the minimization problem is also convex (why?)
• Can use methods that we learned in the previous lecture

• Limited exact line search: αk = argminα∈[0,s] f(xk + αdk)
• Same as above, but tries not to step to far

Common choices of the step size αk

xk+1 = xk + αkdk

• Exact line search: αk = argminα f(xk + αdk)
• A minimization problem itself, but an easier one (one
dimensional)

• If f is convex, the minimization problem is also convex (why?)
• Can use methods that we learned in the previous lecture

• Limited exact line search: αk = argminα∈[0,s] f(xk + αdk)
• Same as above, but tries not to step to far

Illustration of exact line search

Stopping criteria

• Once we have a rule for choosing the search direction and
the step size, we are good to go for running the algorithm.

• Typically the initial point is picked randomly, or if we have
a guess for the location of local minima, we pick close to
them

• But when to stop the algorithm?

Stopping criteria
Some common choices (ϵ > 0 is a small prescribed threshold):

• ∥∇f(xk+1)∥ < ϵ

• This means that we have found a point that is close to a
stationary point (∇f(x) = 0)

• |f(xk+1)− f(xk)| < ϵ

• Improvement in function has become small

• ∥xk+1 − xk∥ < ϵ

• Movement between iterations has become small

Stopping criteria
Some common choices (ϵ > 0 is a small prescribed threshold):

• ∥∇f(xk+1)∥ < ϵ

• This means that we have found a point that is close to a
stationary point (∇f(x) = 0)

• |f(xk+1)− f(xk)| < ϵ

• Improvement in function has become small

• ∥xk+1 − xk∥ < ϵ

• Movement between iterations has become small

Stopping criteria
Some common choices (ϵ > 0 is a small prescribed threshold):

• ∥∇f(xk+1)∥ < ϵ

• This means that we have found a point that is close to a
stationary point (∇f(x) = 0)

• |f(xk+1)− f(xk)| < ϵ

• Improvement in function has become small

• ∥xk+1 − xk∥ < ϵ

• Movement between iterations has become small

Stopping criteria

Some common choices (ϵ > 0 is a small prescribed threshold):

•
|f(xk+1)− f(xk)|
max{1, |f(xk)|}

< ϵ

• A ”relative” measure – removes dependence on the scale of f
• The max is taken to avoid dividing by small numbers

•
∥xk+1 − xk∥

max{1, ∥xk∥}
< ϵ

• Same as above - removes dependence on the scale of xk

Stopping criteria

Some common choices (ϵ > 0 is a small prescribed threshold):

•
|f(xk+1)− f(xk)|
max{1, |f(xk)|}

< ϵ

• A ”relative” measure – removes dependence on the scale of f
• The max is taken to avoid dividing by small numbers

•
∥xk+1 − xk∥

max{1, ∥xk∥}
< ϵ

• Same as above - removes dependence on the scale of xk

Example

min
x

f(x) = 5x2
1+x2

2+4x1x2−6x1−4x2+15

This is a convex function – Any stationary
point must be the unique global
minimizer

Let’s try the steepest descent method:
dk = −∇f(xk)
αk: get from exact line search

x0 = (0, 10)T

Stopping criterion: ∥∇f(x)∥ < 10−6

Convergence

We say that the algorithm converges if xk approaches a single
point x∗

Theorem. Consider the sequence generated by any descent
algorithm with dk = −Bk∇f(xk) such that eigenvalues of Bk

are larger than some m for all k and the step size is chosen
according to the exact line search, or the limited exact line
search. Then, the algorithm converges to a stationary point

Convergence

We say that the algorithm converges if xk approaches a single
point x∗

Theorem. Consider the sequence generated by any descent
algorithm with dk = −Bk∇f(xk) such that eigenvalues of Bk

are larger than some m for all k and the step size is chosen
according to the exact line search, or the limited exact line
search. Then, the algorithm converges to a stationary point

Rates of convergence

• Once we know an iterative algorithm converges, the next
question is how fast?

• For example, if |f(xk)− f(x∗)| ≈ 1
log(log(k)) then sure, this

difference will eventually go to zero, but it will take years to
go even below 0.1,

Rates of convergence
Definition. Let {xk} converge to x∗. We say the convergence is
of order p(≥ 1) and with factor γ(> 0), if for large enough k,

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥p

• Larger p ⇒ faster convergence
• For the same p, smaller γ ⇒ faster convergence
• If {xk} converges with order p, it also converges with any order
p′ ≤ p

• If {xk} converges with factor γ, it also converges with any factor
γ′ ≥ γ

• So we typically look for the largest p and the smallest γ for which
the inequality holds

Rates of convergence
Definition. Let {xk} converge to x∗. We say the convergence is
of order p(≥ 1) and with factor γ(> 0), if for large enough k,

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥p

• Larger p ⇒ faster convergence

• For the same p, smaller γ ⇒ faster convergence
• If {xk} converges with order p, it also converges with any order
p′ ≤ p

• If {xk} converges with factor γ, it also converges with any factor
γ′ ≥ γ

• So we typically look for the largest p and the smallest γ for which
the inequality holds

Rates of convergence
Definition. Let {xk} converge to x∗. We say the convergence is
of order p(≥ 1) and with factor γ(> 0), if for large enough k,

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥p

• Larger p ⇒ faster convergence
• For the same p, smaller γ ⇒ faster convergence

• If {xk} converges with order p, it also converges with any order
p′ ≤ p

• If {xk} converges with factor γ, it also converges with any factor
γ′ ≥ γ

• So we typically look for the largest p and the smallest γ for which
the inequality holds

Rates of convergence
Definition. Let {xk} converge to x∗. We say the convergence is
of order p(≥ 1) and with factor γ(> 0), if for large enough k,

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥p

• Larger p ⇒ faster convergence
• For the same p, smaller γ ⇒ faster convergence
• If {xk} converges with order p, it also converges with any order
p′ ≤ p

• If {xk} converges with factor γ, it also converges with any factor
γ′ ≥ γ

• So we typically look for the largest p and the smallest γ for which
the inequality holds

Rates of convergence
Definition. Let {xk} converge to x∗. We say the convergence is
of order p(≥ 1) and with factor γ(> 0), if for large enough k,

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥p

• Larger p ⇒ faster convergence
• For the same p, smaller γ ⇒ faster convergence
• If {xk} converges with order p, it also converges with any order
p′ ≤ p

• If {xk} converges with factor γ, it also converges with any factor
γ′ ≥ γ

• So we typically look for the largest p and the smallest γ for which
the inequality holds

Rates of convergence
Definition. Let {xk} converge to x∗. We say the convergence is
of order p(≥ 1) and with factor γ(> 0), if for large enough k,

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥p

• Larger p ⇒ faster convergence
• For the same p, smaller γ ⇒ faster convergence
• If {xk} converges with order p, it also converges with any order
p′ ≤ p

• If {xk} converges with factor γ, it also converges with any factor
γ′ ≥ γ

• So we typically look for the largest p and the smallest γ for which
the inequality holds

Rates of convergence

Definition. Let {xk} converge to x∗. We say the convergence is
of order p(≥ 1) and with factor γ(> 0), if for large enough k,

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥p

Some more terminology:
• Linear convergence: p = 1 and γ < 1

• Sublinear convergence: p = 1 and γ = 1

• Superlinear convergence: p > 1

• Quadratic convergence: p = 2

Rates of convergence

Linear convergence: p = 1 and γ < 1

Why is it called linear convergence?

For k large enough, we have

∥xk+ℓ − x∗∥ ≤ γ∥xk+ℓ−1 − x∗∥ ≤ γ2∥xk+ℓ−2 − x∗∥ ≤ . . .

≤ γℓ∥xk − x∗∥

Taking log on both sides,

log∥xk+ℓ − x∗∥ ≤ log
[
γℓ∥xk − x∗∥

]
= ℓ log γ + log∥xk − x∗∥

− log∥xk+ℓ − x∗∥, which measures the number of correct significant digits in
xk+ℓ, grows linearly with ℓ

Rates of convergence

Linear convergence: p = 1 and γ < 1

Why is it called linear convergence?

For k large enough, we have

∥xk+ℓ − x∗∥ ≤ γ∥xk+ℓ−1 − x∗∥ ≤ γ2∥xk+ℓ−2 − x∗∥ ≤ . . . ≤ γℓ∥xk − x∗∥

Taking log on both sides,

log∥xk+ℓ − x∗∥ ≤ log
[
γℓ∥xk − x∗∥

]
= ℓ log γ + log∥xk − x∗∥

− log∥xk+ℓ − x∗∥, which measures the number of correct significant digits in
xk+ℓ, grows linearly with ℓ

Rates of convergence

Linear convergence: p = 1 and γ < 1

Why is it called linear convergence?

For k large enough, we have

∥xk+ℓ − x∗∥ ≤ γ∥xk+ℓ−1 − x∗∥ ≤ γ2∥xk+ℓ−2 − x∗∥ ≤ . . . ≤ γℓ∥xk − x∗∥

Taking log on both sides,

log∥xk+ℓ − x∗∥ ≤ log
[
γℓ∥xk − x∗∥

]
= ℓ log γ + log∥xk − x∗∥

− log∥xk+ℓ − x∗∥, which measures the number of correct significant digits in
xk+ℓ, grows linearly with ℓ

Examples

• ∥xk − x∗∥ ≈ ak, 0 < a < 1 linear convergence

• ∥xk − x∗∥ ≈ a2
k quadratic convergence

• Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration

• ∥xk − x∗∥ ≈ 1
k sublinear convergence

Examples

• ∥xk − x∗∥ ≈ ak, 0 < a < 1 linear convergence

• ∥xk − x∗∥ ≈ a2
k quadratic convergence

• Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration

• ∥xk − x∗∥ ≈ 1
k sublinear convergence

Examples

• ∥xk − x∗∥ ≈ ak, 0 < a < 1 linear convergence

• ∥xk − x∗∥ ≈ a2
k quadratic convergence

• Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration

• ∥xk − x∗∥ ≈ 1
k sublinear convergence

Convergence rate of steepest descent for quadratic
functions

Theorem. Consider a quadratic function

f(x) =
1

2
xTQx+ bTx+ c Q ≻ 0

Let m and M be the smallest and largest eigenvalue of Q. Then
the sequence {f(xk)} generated by the steepest descent
algorithm with exact line search converges to the unique global
minimum of f , where the convergence is linear (p = 1), and
with factor γ =

(
M−m
M+m

)2

Remarks

• κ = M
m is called condition

number of the matrix Q
• Appears often in numeric
analysis

•
(
M−m
M+m

)2
=

(
κ−1
κ+1

)2
• We want κ close to 1 for
fast convergence

κ
(
M−m
M+m

)2
k; ∥xk − x∗∥ < 0.1

1.1 0.002 1
3 0.25 2
10 0.67 6
100 0.96 58
200 0.98 116
400 0.99 231

Remarks

• κ = M
m is called condition

number of the matrix Q
• Appears often in numeric
analysis

•
(
M−m
M+m

)2
=

(
κ−1
κ+1

)2
• We want κ close to 1 for
fast convergence

κ
(
M−m
M+m

)2
k; ∥xk − x∗∥ < 0.1

1.1 0.002 1
3 0.25 2
10 0.67 6
100 0.96 58
200 0.98 116
400 0.99 231

Large κ

Small κ

Beyond quadratic case
What if the function f we are minimizing is not quadratic?

• Let x∗ be the optimal solution

• Using the Taylor series, f can be approximated by a
quadratic:

1

2
xT∇2f(x∗)x (plus linear and constant terms)

• Hence, the condition number κ of the Hessian ∇2f(x∗)
dictates convergence rate

