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Leontief input-output model of an economy
• The Leontief input-output model breaks a nation’s
economy into sectors (so-called producing sectors)

• Agriculture
• Manufacturing
• Services
• Education

Wassily Leontief
1906-1999

• Each sector needs the output of the other sectors in order to produce
its own output

• Each sector should produce to meet the demand of the other sectors,
as well as the demand of the society
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Consumption matrix

Transportation Agriculture Services Manufacturing
Transportation .2 .3 .5 .3
Agriculture .5 .3 .1 .0
Services .1 .2 .2 .5
Manufacturing .1 .1 .1 .1

This is called the consumption matrix, denoted by C

In order to produce one unit of transportation, the
transportation industry needs to consume .2 units of
transportation itself, .5 units of agriculture, .1 units of services,
and .1 units of manufacturing
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Leontief production equation

• Let d = (d1, d2, d3, d4)
T be a vector denoting the demand of

the society for each of the producing sectors

• So we are trying to solve the following equation:
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
”Amount produced = intermediate demand + final demand”
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Leontief production equation

• For a given C and d, we need to solve the following linear
system to figure out how much each sector should
produce:

(I − C)x = d

• An economy is called ”productive” if for every demand
vector d there exists a nonnegative production vector x
satisfying the above linear system. This is a property of the
consumption matrix only.
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Linear programming
• A linear program is an optimization problem of the form:

minimize cTx

subject to Ax = b

and x ≥ 0

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n.

• This is called a linear program in standard form

• Not all linear programs appear in this form but we will see
later that they can all be rewritten in this form
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Transportation problem

• All plants produce product A (in different quantities) and all
warehouses need product A (also in different quantities)

• The cost of transporting one unit of product A from i to j is cij



Transportation problem

• We want to minimize the total cost of transporting product A while still
fulfilling the demand from the warehouses and without exceeding the
supply produced by the plants



Transportation problem

• Decision variables: xij , quantity transported from i to j

• The objective function to minimize:
∑

ij cijxij

The constraints are:

• Not exceed the supply in any factory:
∑n

j=1 xij ≤ si, i = 1, 2, 3

• Fulfill needs of the warehouses:
∑n

i=1 xij ≥ dj
• Quantity must be non-negative: xij ≥ 0 for all i, j
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The maximum flow problem

• The goal is to ship as much oil as possible from S to T

• We cannot exceed the capacities on the edges

• No storage at the nodes: for every node, flow in=flow out



LP relaxation for the largest independent set
problem

• Find the largest collection of nodes among which no two
share an edge

• We can write this problem as a linear program with integer
constraints
Such a problem is called integer program



LP relaxation for the largest independent set
problem

• Integer programs (IPs) are in general difficult to solve. An easier
problem in the LP relaxation of this problem by replacing the
constraint xi(1− xi) = 0 with 0 ≤ xi ≤ 1

Minimize x1 + x2 + . . .+ x12 s.t. x1 + x2 ≤ 1

x1 + x8 ≤ 1

...
xi(1− xi) = 0 0 ≤ xi ≤ 1 for all i



LP relaxation for the largest independent set
problem

Minimize x1 + x2 + . . .+ x12 s.t. x1 + x2 ≤ 1

x1 + x8 ≤ 1

...
xi(1− xi) = 0 0 ≤ xi ≤ 1 for all i

The optimal solution to the LP (denoted by OPTLP ), is an upperbound
to the optimal solution to the IP (denoted by OPTIP ):

OPTIP ≤ OPTLP



Scheduling nurses
•• A hospital wants to start weekly nightshifts for its nurses. The goal is
to hire the fewest number of nurses possible

• There is demand for nurses on days j = 1, ...7

• Each nurse wants to work 5 consecutive days if possible

• How many nurses should we hire?

• The decision variables here will be x1, x2, . . . , x7 where xj is the
number of nurses hired for day j

• The objective is to minimize the total number of nurses:
7∑

j=1

xj
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Scheduling nurses
• How many nurses should we hire?

• The constraints take into account the demand for each day but
also the fact that the nurses want to work 5 consecutive days.
This means that if the nurses work on day 1, they will work all the
way through day 5

x1 ≥d1

x1+x2 ≥d2

x1+x2+x3 ≥d3

x1+x2+x3+x4 ≥d4

x1+x2+x3+x4+x5 ≥d5

x2+x3+x4+x5+x6 ≥d6

x3+x4+x5+x6+x7 ≥d7



Scheduling nurses
Minimize

7∑
j=1

xj

s.t. x1 ≥d1

x1+x2 ≥d2

x1+x2+x3 ≥d3

x1+x2+x3+x4 ≥d4

x1+x2+x3+x4+x5 ≥d5

x2+x3+x4+x5+x6 ≥d6

x3+x4+x5+x6+x7 ≥d7

• This is also an IP programming, which is difficult to solve. The LP
relaxation of this IP is the following:

x1, x2, . . . , x7 ≥ 0

•

We have OPTLP ≤ OPTIP
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History of linear programming

• Solving systems of linear inequalities goes at least as far back as the
late 1700s, when Fourier invented a (pretty inefficient) solution
technique, known today as the ”Fourier-Motzkin” elimination method

• In 1930s, Kantorovich and Koopmans brought new life to linear
programming by showing its widespread applicability in resource
allocation problems. They jointly received the Nobel Prize in
Economics in 1975.
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History of linear programming

John von Neumann (1903-1957) George Dantzig (1914-2005)

• Von Neumann is often credited with the theory of LP duality (the
topic of our next lecture)

• In 1947, Dantzig invented the first practical algorithm for solving LPs:
the simplex method. This essentially revolutionized the use of linear
programming in practice
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History of linear programming

Leonid Khachiyan (1952 - 2005) Narendra Karmarkar (b. 1957)

• In 1979, Khachiyan showed that LPs were solvable in polynomial time
using the ellipsoid method. This was a theoretical breakthrough
more than a practical one, as in practice the algorithm was quite slow.

• In 1984, Karmarkar developed the interior point method, another
polynomial time algorithm for LPs, which was also efficient in practice.
Along with the simplex method, this is the method of choice today for
solving LPs
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