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Introduction
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y

Suppose that we want to fit a regression model: Ax ≈ b

But model with large coefficients (large x) can lead to spurious predictions

Our goal is to find a vector x that is small, and also makes the residual
∥Ax− b∥ small

minimize (∥Ax− b∥, ∥x∥)

How can we control both norms at the same time?
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Regularization
We can formulate our problem as minimizing the weighted sum of the
objectives:

minimize ∥Ax− b∥+ γ∥x∥

where γ > 0 is a parameter. Such method is called regularization
parameter

• γ = 0: we try to find x that solves Ax ≈ b

• γ large: we try to minimize ∥x∥

Alternatively, we can minimize the weighted sum of squared norms:

minimize ∥Ax− b∥2 + γ∥x∥2
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Tikhonov regularization

The most common form of regularization is with the Euclidean norms

minimize ∥Ax− b∥22 + λ∥x∥22 (1)
This is called Tikhonov regularization problem

The regression problem Ax ≈ b that solves for x via (1) is called ridge
regression.The solution of (1) is:

x = (ATA+ λId)
−1AT b

Since ATA+ λId is invertible for any λ > 0, the Tikhonov regularized
least-squares solution requires no invertibility assumptions on the matrix
ATA
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1-norm regularization
We can also regularized with the 1-norm:

minimize ∥Ax− b∥2 + λ∥x∥1 (2)
The regression problem Ax ≈ b that solves for x via (2) is
called LASSO



Ridge vs LASSO
LASSO can help with variable selection

Plots of coefficients as functions of λ



Ridge vs LASSO
Graphical solutions to the LASSO (left) and Ridge (right) regression

Feasible regions of 1- and 2-norm, and the level curve of ∥Ax− b∥2
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Signal reconstruction

We consider signals in one dimension, e.g., audio signals, represented by
a vector x ∈ Rn

The coefficients xi correspond to the signal value at time i, evaluated (or
sampled, in the language of signal processing)

It is usually assumed that the signal does not vary too rapidly:
xi ≈ xi + 1
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Signal reconstruction

The signal x is corrupted by an additive noise v:

xcor = x+ v

The goal is to form an estimate x̂ of the original signal x, given the
corrupted signal xcor

This process is called signal reconstruction, de-noising or smoothing



Signal reconstruction

One simple formulation of the reconstruction problem is the following
minimizex̂ (∥x̂−xcor∥2, φ(x̂)) (3)

where the function φ : Rn → R is convex, and is called the regularization
function or smoothing objective, which measures the roughness, or lack
of smoothness, of the estimate x̂

The reconstruction problem (3) seeks signals that are close to the
corrupted signal (small ∥x̂−xcor∥2), and that are smooth (small φ(x̂))
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Signal reconstruction

One simple formulation of the reconstruction problem is the following

minimizex̂ (∥x̂−xcor∥2, φ(x̂)) (3)

We can reformulate the signal reconstruction problem using regularization

minimizex̂ ∥x̂−xcor∥22 + λφ(x̂) (3’)



Measure of smoothness

The simplest reconstruction method uses the quadratic smoothing
function

ϕ2(x) =
n−1∑
i=1

(xn+1 − xn)
2

This can be written as

ϕ2(x) =

∥∥∥∥∥∥∥∥∥∥


−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
... ... ... ... ... ...
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1



x1

x2
...
xn
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Quadratic smoothing

The optimization problem is

minimizex̂ ∥x̂−xcor∥22 + λ∥Dx̂∥22

This problem is called quadratic smoothing

The solution of this problem is:

x̂ = (1 + λDTD)−1xcor
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The optimization problem is
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This problem is called quadratic smoothing
The solution of this problem is:

x̂ = (1 + λDTD)−1xcor



Example
Result of reconstructing a signal x ∈ R4000

Top: ∥x̂− xcor∥ = 8, Middle: ∥x̂− xcor∥ = 3, Bottom: ∥x̂− xcor∥ = 1



Total variation reconstruction

Simple quadratic smoothing works well as a reconstruction method when
the original signal is very smooth

But any rapid variations in the original signal will be removed by quadratic
smoothing

Alternatively, we can use the function:

ϕtv(x) =
n−1∑
i=1

|xn+1 − xn| = ∥Dx∥1

which is called total variation of x
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Example
Let’s try to recover a signal x ∈ R2000



Example
Reconstruction with quadratic smoothing

Top: ∥x̂− xcor∥ = 10, Middle: ∥x̂− xcor∥ = 7, Bottom: ∥x̂− xcor∥ = 4



Example
Reconstruction with TV reconstruction

Top: ∥Dx∥1 = 5, Middle: ∥Dx∥1 = 8, Bottom: ∥Dx∥1 = 10



Image denoising

The TV reconstruction for images is:

minimizex̂ ∥x̂−xcor∥22 + λTV(x̂)

where

TV(x) =
m−1∑
i=1

m∑
j=1

|xi,j−xi+1,j|+
m∑
i=1

n−1∑
j=1

|xi,j−xi,j+1|



Example


