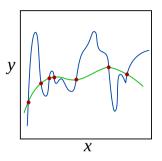
Regularization, Sparsity and Energy Minimization

Source: Boyd and Vandenberghe, Convex Optimization (2014).

Sparsity

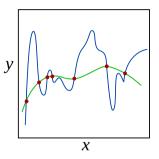
Energy minimization

Introduction



Suppose that we want to fit a regression model: $Ax \approx b$

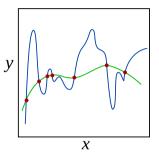
Introduction



Suppose that we want to fit a regression model: $Ax \approx b$

But model with large coefficients (large x) can lead to spurious predictions

Introduction



Suppose that we want to fit a regression model: $Ax \approx b$

But model with large coefficients (large x) can lead to spurious predictions

Our goal is to find a vector x that is small, and also makes the residual $\|Ax - b\|$ small

minimize
$$(||Ax - b||, ||x||)$$

How can we control both norms at the same time?

We can formulate our problem as minimizing the weighted sum of the objectives:

```
minimize ||Ax - b|| + \gamma ||x||
```

where $\gamma>0$ is a parameter. Such method is called regularization parameter

• $\gamma = 0$: we try to find x that solves $Ax \approx b$

We can formulate our problem as minimizing the weighted sum of the objectives:

```
minimize ||Ax - b|| + \gamma ||x||
```

where $\gamma>0$ is a parameter. Such method is called <code>regularization</code> parameter

- $\gamma = 0$: we try to find x that solves $Ax \approx b$
- γ large: we try to minimize ||x||

We can formulate our problem as minimizing the weighted sum of the objectives:

```
minimize ||Ax - b|| + \gamma ||x||
```

where $\gamma>0$ is a parameter. Such method is called <code>regularization</code> parameter

- $\gamma = 0$: we try to find x that solves $Ax \approx b$
- γ large: we try to minimize ||x||

Alternatively, we can minimize the weighted sum of squared norms:

minimize
$$||Ax - b||^2 + \gamma ||x||^2$$

Tikhonov regularization

The most common form of regularization is with the Euclidean norms

minimize
$$||Ax - b||_2^2 + \lambda ||x||_2^2$$
 (1)

This is called **Tikhonov regularization problem**

Tikhonov regularization

The most common form of regularization is with the Euclidean norms

minimize
$$||Ax - b||_2^2 + \lambda ||x||_2^2$$
 (1)

This is called **Tikhonov regularization problem**

The regression problem $Ax \approx b$ that solves for x via (1) is called **ridge** regression.

Tikhonov regularization

The most common form of regularization is with the Euclidean norms

minimize
$$||Ax - b||_2^2 + \lambda ||x||_2^2$$
 (1)

This is called **Tikhonov regularization problem**

The regression problem $Ax \approx b$ that solves for x via (1) is called **ridge** regression. The solution of (1) is:

$$x = (A^T A + \lambda I_d)^{-1} A^T b$$

Since $A^TA + \lambda I_d$ is invertible for any $\lambda > 0$, the Tikhonov regularized least-squares solution requires no invertibility assumptions on the matrix A^TA

Sparsity

Energy minimization

1-norm regularization

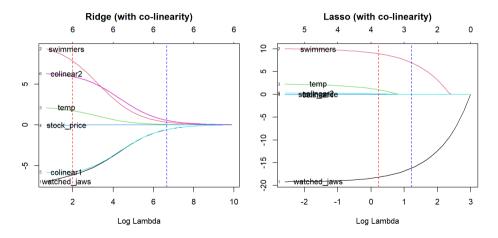
We can also regularized with the 1-norm:

minimize
$$||Ax - b||_2 + \lambda ||x||_1$$
 (2)

The regression problem $Ax \approx b$ that solves for x via (2) is called **LASSO**

Ridge vs LASSO

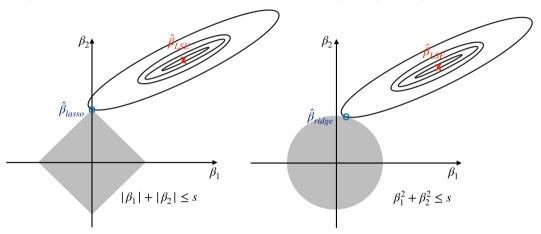
LASSO can help with variable selection



Plots of coefficients as functions of λ

Ridge vs LASSO

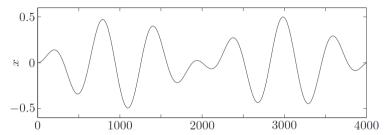
Graphical solutions to the LASSO (left) and Ridge (right) regression



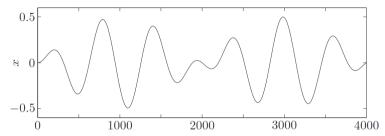
Feasible regions of 1- and 2-norm, and the level curve of $||Ax - b||^2$

Sparsity

Energy minimization

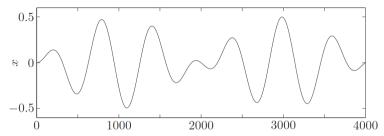


We consider signals in one dimension, e.g., audio signals, represented by a vector $x \in \mathbb{R}^n$



We consider signals in one dimension, e.g., audio signals, represented by a vector $x \in \mathbb{R}^n$

The coefficients x_i correspond to the signal value at time *i*, evaluated (or sampled, in the language of signal processing)

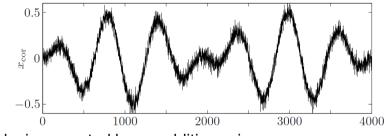


We consider signals in one dimension, e.g., audio signals, represented by a vector $x \in \mathbb{R}^n$

The coefficients x_i correspond to the signal value at time *i*, evaluated (or sampled, in the language of signal processing)

It is usually assumed that the signal does not vary too rapidly:

 $x_i \approx x_i + 1$

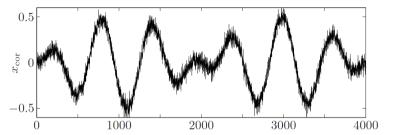


The signal x is corrupted by an additive noise v:

 $x_{\rm cor} = x + v$

The goal is to form an estimate \hat{x} of the original signal x, given the corrupted signal $x_{\rm cor}$

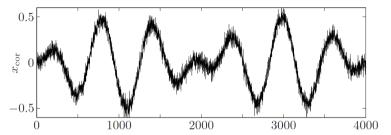
This process is called signal reconstruction, de-noising or smoothing



One simple formulation of the reconstruction problem is the following

minimize_{$$\hat{x}$$} ($\|\hat{x} - x_{cor}\|_2, \varphi(\hat{x})$) (3)

where the function $\varphi : \mathbb{R}^n \to \mathbb{R}$ is convex, and is called the **regularization** function or **smoothing objective**, which measures the roughness, or lack of smoothness, of the estimate \hat{x}

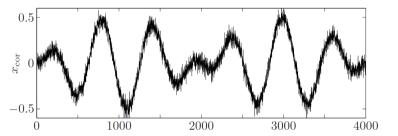


One simple formulation of the reconstruction problem is the following

minimize_{$$\hat{x}$$} ($\|\hat{x} - x_{cor}\|_2, \varphi(\hat{x})$) (3)

where the function $\varphi : \mathbb{R}^n \to \mathbb{R}$ is convex, and is called the **regularization** function or **smoothing objective**, which measures the roughness, or lack of smoothness, of the estimate \hat{x}

The reconstruction problem (3) seeks signals that are close to the corrupted signal (small $\|\hat{x}-x_{cor}\|_2$), and that are smooth (small $\varphi(\hat{x})$)



One simple formulation of the reconstruction problem is the following

minimize_{$$\hat{x}$$} ($\|\hat{x} - x_{cor}\|_2, \varphi(\hat{x})$) (3)

We can reformulate the signal reconstruction problem using regularization

minimize_{$$\hat{x}$$} $\|\hat{x} - x_{cor}\|_2^2 + \lambda \varphi(\hat{x})$ (3')

Measure of smoothness

The simplest reconstruction method uses the quadratic smoothing function

$$\phi_2(x) = \sum_{i=1}^{n-1} (x_{n+1} - x_n)^2$$

Measure of smoothness

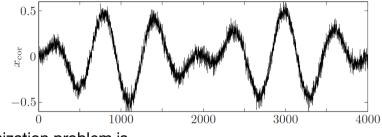
The simplest reconstruction method uses the quadratic smoothing function

$$\phi_2(x) = \sum_{i=1}^{n-1} (x_{n+1} - x_n)^2$$

This can be written as

$$\phi_2(x) = \left\| \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \right\|^2 = \|Dx\|_2^2$$

Quadratic smoothing

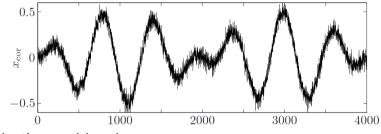


The optimization problem is

minimize_{$$\hat{x}$$} $\|\hat{x} - x_{cor}\|_2^2 + \lambda \|D\hat{x}\|_2^2$

This problem is called quadratic smoothing

Quadratic smoothing



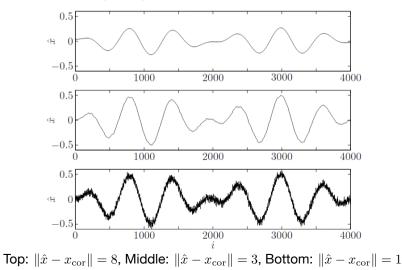
The optimization problem is

$$\text{minimize}_{\hat{x}} \| \hat{x} - x_{\text{cor}} \|_2^2 + \lambda \| D \hat{x} \|_2^2$$

This problem is called **quadratic smoothing** The solution of this problem is:

$$\hat{x} = (1 + \lambda D^T D)^{-1} x_{\rm con}$$

Result of reconstructing a signal $x \in \mathbb{R}^{4000}$



Total variation reconstruction

Simple quadratic smoothing works well as a reconstruction method when the original signal is very smooth

But any rapid variations in the original signal will be removed by quadratic smoothing

Total variation reconstruction

Simple quadratic smoothing works well as a reconstruction method when the original signal is very smooth

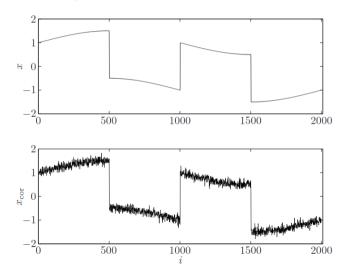
But any rapid variations in the original signal will be removed by quadratic smoothing

Alternatively, we can use the function:

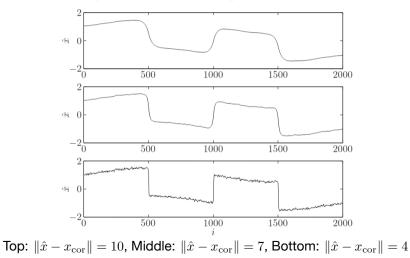
$$\phi_{\rm tv}(x) = \sum_{i=1}^{n-1} |x_{n+1} - x_n| = ||Dx||_1$$

which is called **total variation** of x

Let's try to recover a signal $x \in \mathbb{R}^{2000}$



Reconstruction with quadratic smoothing



Reconstruction with TV reconstruction

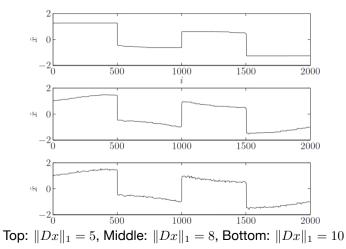


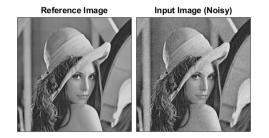
Image denoising

The TV reconstruction for images is:

minimize_{$$\hat{x}$$} $\|\hat{x} - x_{cor}\|_2^2 + \lambda TV(\hat{x})$

where

$$TV(x) = \sum_{i=1}^{m-1} \sum_{j=1}^{m} |x_{i,j} - x_{i+1,j}| + \sum_{i=1}^{m} \sum_{j=1}^{n-1} |x_{i,j} - x_{i,j+1}|$$



Denoised Image - CVX

