
Online convex optimization 2

Source: David Childer’s 73-423 notes.



Review

• Last time, we talked about two online learning algorithm:
Perceptron and Follow the Leader (FTL)

• We showed that FTL can have a worst-case regret of
order T . We now introduce a new algorithm that, under
some conditions, can produce regret of order

√
T



Follow the Regularized Leader (FTRL)
• Previously, we showed that FTL can be unstable when ℓt(θ)− ℓt+1(θ)
is large

• To avoid instability, we modify FTL by regularization:

• We choose a sequence of vectors θ1, . . . , θT that minimizes the
regret

• After choosing θt, we observe a loss ℓt(θt)
Example: ℓt(θ) = (θTxt − yt)

2

At step t:

Choose θt that minimizes
t−1∑
s=1

ℓs(θt) + λR(θt)

where R is a regularizer



Follow the Regularized Leader (FTRL)
• Previously, we showed that FTL can be unstable when ℓt(θ)− ℓt+1(θ)
is large

• To avoid instability, we modify FTL by regularization:

• We choose a sequence of vectors θ1, . . . , θT that minimizes the
regret

• After choosing θt, we observe a loss ℓt(θt)
Example: ℓt(θ) = (θTxt − yt)

2

At step t:

Choose θt that minimizes
t−1∑
s=1

ℓs(θt) + λR(θt)

where R is a regularizer



Follow the Regularized Leader (FTRL)
• Previously, we showed that FTL can be unstable when ℓt(θ)− ℓt+1(θ)
is large

• To avoid instability, we modify FTL by regularization:
• We choose a sequence of vectors θ1, . . . , θT that minimizes the
regret

• After choosing θt, we observe a loss ℓt(θt)
Example: ℓt(θ) = (θTxt − yt)

2

At step t:

Choose θt that minimizes
t−1∑
s=1

ℓs(θt) + λR(θt)

where R is a regularizer



Follow the Regularized Leader (FTRL)
• Previously, we showed that FTL can be unstable when ℓt(θ)− ℓt+1(θ)
is large

• To avoid instability, we modify FTL by regularization:
• We choose a sequence of vectors θ1, . . . , θT that minimizes the
regret

• After choosing θt, we observe a loss ℓt(θt)
Example: ℓt(θ) = (θTxt − yt)

2

At step t:

Choose θt that minimizes
t−1∑
s=1

ℓs(θt) + λR(θt)

where R is a regularizer



Follow the Regularized Leader (FTRL)
• Previously, we showed that FTL can be unstable when ℓt(θ)− ℓt+1(θ)
is large

• To avoid instability, we modify FTL by regularization:
• We choose a sequence of vectors θ1, . . . , θT that minimizes the
regret

• After choosing θt, we observe a loss ℓt(θt)
Example: ℓt(θ) = (θTxt − yt)

2

At step t:

Choose θt that minimizes
t−1∑
s=1

ℓs(θt) + λR(θt)

where R is a regularizer



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do

1. Choose θt that minimizes
∑t−1

s=1 ℓs(θt) + λR(θt)
2. Receive new data point
3. Compute loss ℓt(θt)

end



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do

1. Choose θt that minimizes
∑t−1

s=1 ℓs(θt) + λR(θt)
2. Receive new data point
3. Compute loss ℓt(θt)

end



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Choose θt that minimizes

∑t−1
s=1 ℓs(θt) + λR(θt)

2. Receive new data point
3. Compute loss ℓt(θt)

end



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Choose θt that minimizes

∑t−1
s=1 ℓs(θt) + λR(θt)

2. Receive new data point

3. Compute loss ℓt(θt)

end



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Choose θt that minimizes

∑t−1
s=1 ℓs(θt) + λR(θt)

2. Receive new data point
3. Compute loss ℓt(θt)

end



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Choose θt that minimizes

∑t−1
s=1 ℓs(θt) + λR(θt)

2. Receive new data point
3. Compute loss ℓt(θt)

end

Examples of R:
• Square regularizer: R(x) = 1

2∥x∥
2
2

• Entropic regularizer: R(x) =
∑d

i=1 xi logxi over {x ∈ Rd :
∑

i xi = 1, xi ≥ 0}



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Choose θt that minimizes

∑t−1
s=1 ℓs(θt) + λR(θt)

2. Receive new data point
3. Compute loss ℓt(θt)

end

Examples of R:
• Square regularizer: R(x) = 1

2∥x∥
2
2

• Entropic regularizer: R(x) =
∑d

i=1 xi logxi over {x ∈ Rd :
∑

i xi = 1, xi ≥ 0}



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Choose θt that minimizes

∑t−1
s=1 ℓs(θt) + λR(θt)

2. Receive new data point
3. Compute loss ℓt(θt)

end

Parameter λ > 0 determines strength of the regularization: small values closer to FTL,
large values closer to minimizing R

Corresponds exactly to running regularized optimization each round



Follow the Regularized Leader (FTRL)
Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Choose θt that minimizes

∑t−1
s=1 ℓs(θt) + λR(θt)

2. Receive new data point
3. Compute loss ℓt(θt)

end

Parameter λ > 0 determines strength of the regularization: small values closer to FTL,
large values closer to minimizing R

Corresponds exactly to running regularized optimization each round



Example 1: Online Linear Optimization
• A data stream: x1, . . . , xT ∈ Rd

• Let ℓt(θt) = θTt xt and use quadratic regularizer R(θt) =
1
2
∥θ∥22

• FTRL update step is

Choose θt that minimizes
t−1∑
s=1

θTt xs +
1

2
λ∥θt∥22

• Solving the first-order condition for θt,

θt = −1

λ

t−1∑
s=1

xs = θt−1 −
1

λ
xt−1



Example 1: Online Linear Optimization
• A data stream: x1, . . . , xT ∈ Rd

• Let ℓt(θt) = θTt xt and use quadratic regularizer R(θt) =
1
2
∥θ∥22

• FTRL update step is

Choose θt that minimizes
t−1∑
s=1

θTt xs +
1

2
λ∥θt∥22

• Solving the first-order condition for θt,

θt = −1

λ

t−1∑
s=1

xs = θt−1 −
1

λ
xt−1



Example 1: Online Linear Optimization
• A data stream: x1, . . . , xT ∈ Rd

• Let ℓt(θt) = θTt xt and use quadratic regularizer R(θt) =
1
2
∥θ∥22

• FTRL update step is

Choose θt that minimizes
t−1∑
s=1

θTt xs +
1

2
λ∥θt∥22

• Solving the first-order condition for θt,

θt = −1

λ

t−1∑
s=1

xs = θt−1 −
1

λ
xt−1



Example 1: Online Linear Optimization
• A data stream: x1, . . . , xT ∈ Rd

• Let ℓt(θt) = θTt xt and use quadratic regularizer R(θt) =
1
2
∥θ∥22

• FTRL update step is

Choose θt that minimizes
t−1∑
s=1

θTt xs +
1

2
λ∥θt∥22

• Solving the first-order condition for θt,

θt = −1

λ

t−1∑
s=1

xs = θt−1 −
1

λ
xt−1



Algorithm: Online Linear Optimization

Input: A stream of data x1, x2, , . . . , xT , where xt ∈ Rd, a regularized
parameter λ > 0

Initialize the coefficients θ1 ∈ Rd

for t = 2 to T do
θt = θt−1 − 1

λ
xt−1

end

With λ ≈
√
T gives RegretT =

√
T



Algorithm: Online Linear Optimization

Input: A stream of data x1, x2, , . . . , xT , where xt ∈ Rd, a regularized
parameter λ > 0

Initialize the coefficients θ1 ∈ Rd

for t = 2 to T do
θt = θt−1 − 1

λ
xt−1

end

With λ ≈
√
T gives RegretT =

√
T



Linearization
• Let θ∗ minimize the total loss

∑T
t=1 ℓt(θ)

• Recall that if ℓt is convex, then for any θt,
ℓt(θ

∗) ≥ ℓt(θt) +∇ℓt(θt)
T (θ∗ − θt)

• Rearranging, we obtain
ℓt(θt)− ℓt(θ

∗) ≤ ∇ℓt(θt)
T (θt − θ∗)

• Taking the sum over t,
T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗) ≤

T∑
t=1

∇ℓt(θt)
T (θt − θ∗)



Linearization
• Let θ∗ minimize the total loss

∑T
t=1 ℓt(θ)

• Recall that if ℓt is convex, then for any θt,
ℓt(θ

∗) ≥ ℓt(θt) +∇ℓt(θt)
T (θ∗ − θt)

• Rearranging, we obtain
ℓt(θt)− ℓt(θ

∗) ≤ ∇ℓt(θt)
T (θt − θ∗)

• Taking the sum over t,
T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗) ≤

T∑
t=1

∇ℓt(θt)
T (θt − θ∗)



Linearization
• Let θ∗ minimize the total loss

∑T
t=1 ℓt(θ)

• Recall that if ℓt is convex, then for any θt,
ℓt(θ

∗) ≥ ℓt(θt) +∇ℓt(θt)
T (θ∗ − θt)

• Rearranging, we obtain
ℓt(θt)− ℓt(θ

∗) ≤ ∇ℓt(θt)
T (θt − θ∗)

• Taking the sum over t,
T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗) ≤

T∑
t=1

∇ℓt(θt)
T (θt − θ∗)



Linearization
• Let θ∗ minimize the total loss

∑T
t=1 ℓt(θ)

• Recall that if ℓt is convex, then for any θt,
ℓt(θ

∗) ≥ ℓt(θt) +∇ℓt(θt)
T (θ∗ − θt)

• Rearranging, we obtain
ℓt(θt)− ℓt(θ

∗) ≤ ∇ℓt(θt)
T (θt − θ∗)

• Taking the sum over t,
T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗) ≤

T∑
t=1

∇ℓt(θt)
T (θt − θ∗)



Linearization

• Define ℓ̃t(θ) = ∇ℓt(θt)
T θ. We can rewrite the right-hand side

T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗) ≤

T∑
t=1

ℓ̃t(θt)−
T∑
t=1

ℓ̃t(θ
∗)

• In other words,
RegretT (ℓ1:T ) ≤ RegretT (ℓ̃1:T )

If the right-hand side is small, then so is the left-hand side

• Linearization trick: replace ℓt with ℓ̃t in the FTRL algorithm



Linearization

• Define ℓ̃t(θ) = ∇ℓt(θt)
T θ. We can rewrite the right-hand side

T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗) ≤

T∑
t=1

ℓ̃t(θt)−
T∑
t=1

ℓ̃t(θ
∗)

• In other words,
RegretT (ℓ1:T ) ≤ RegretT (ℓ̃1:T )

If the right-hand side is small, then so is the left-hand side

• Linearization trick: replace ℓt with ℓ̃t in the FTRL algorithm



Linearization

• Define ℓ̃t(θ) = ∇ℓt(θt)
T θ. We can rewrite the right-hand side

T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗) ≤

T∑
t=1

ℓ̃t(θt)−
T∑
t=1

ℓ̃t(θ
∗)

• In other words,
RegretT (ℓ1:T ) ≤ RegretT (ℓ̃1:T )

If the right-hand side is small, then so is the left-hand side

• Linearization trick: replace ℓt with ℓ̃t in the FTRL algorithm



Online Gradient Descent

• We will use the square regularizer:

Choose θt that minimizes
t−1∑
s=1

∇ℓs(θs)
T θt +

1

2
λ∥θt∥22

• Solving the first-order condition for θt,

θt = −1

λ

t−1∑
s=1

∇ℓs(θs)
T = θt−1 −

1

λ
∇ℓt−1(θt−1)



Online Gradient Descent

• We will use the square regularizer:

Choose θt that minimizes
t−1∑
s=1

∇ℓs(θs)
T θt +

1

2
λ∥θt∥22

• Solving the first-order condition for θt,

θt = −1

λ

t−1∑
s=1

∇ℓs(θs)
T = θt−1 −

1

λ
∇ℓt−1(θt−1)



Online Gradient Descent

Input: A regularization parameter λ > 0

Initialize θ1 ∈ Rd

for t = 2 to T do
1. Update θt = θt−1 − 1

λ
∇ℓt−1(θt−1)

2. Receive new data point
3. Compute loss gradient ∇ℓt(θt)

end



FTRL in practice
• In practice, hard part of implementation is choosing regularization
parameter λ

• Need to know time frame T which might not be possible

• This has led to variety of modified algorithms which choose T
adaptively

• If time frame not known, simple approach is doubling trick

• Set the first horizon T1

For t = 1, . . . , T1, run FTRL with λ =
√
T1

• When we reach Tk, set Tk+1 = 2Tk

For t = Tk + 1, Tk + 2, . . . , Tk+1, run FTRL with λ =
√
Tk



FTRL in practice
• In practice, hard part of implementation is choosing regularization
parameter λ

• Need to know time frame T which might not be possible

• This has led to variety of modified algorithms which choose T
adaptively

• If time frame not known, simple approach is doubling trick

• Set the first horizon T1

For t = 1, . . . , T1, run FTRL with λ =
√
T1

• When we reach Tk, set Tk+1 = 2Tk

For t = Tk + 1, Tk + 2, . . . , Tk+1, run FTRL with λ =
√
Tk



FTRL in practice
• In practice, hard part of implementation is choosing regularization
parameter λ

• Need to know time frame T which might not be possible

• This has led to variety of modified algorithms which choose T
adaptively

• If time frame not known, simple approach is doubling trick

• Set the first horizon T1

For t = 1, . . . , T1, run FTRL with λ =
√
T1

• When we reach Tk, set Tk+1 = 2Tk

For t = Tk + 1, Tk + 2, . . . , Tk+1, run FTRL with λ =
√
Tk



FTRL in practice
• In practice, hard part of implementation is choosing regularization
parameter λ

• Need to know time frame T which might not be possible

• This has led to variety of modified algorithms which choose T
adaptively

• If time frame not known, simple approach is doubling trick
• Set the first horizon T1

For t = 1, . . . , T1, run FTRL with λ =
√
T1

• When we reach Tk, set Tk+1 = 2Tk

For t = Tk + 1, Tk + 2, . . . , Tk+1, run FTRL with λ =
√
Tk



FTRL in practice
• In practice, hard part of implementation is choosing regularization
parameter λ

• Need to know time frame T which might not be possible

• This has led to variety of modified algorithms which choose T
adaptively

• If time frame not known, simple approach is doubling trick
• Set the first horizon T1

For t = 1, . . . , T1, run FTRL with λ =
√
T1

• When we reach Tk, set Tk+1 = 2Tk

For t = Tk + 1, Tk + 2, . . . , Tk+1, run FTRL with λ =
√
Tk



FTRL in practice
• Can also use continuously-updated penalties, e.g. λt =

√
t

• A popular method is Adagrad
• Change Online Gradient Descent update to

θt = θt−1 −
1

λ
√∑t−1

s=1 ∇ℓ2s(θs)
∇ℓt−1(θt−1)

• For online gradient descent with constraint, we can enforce our
update to be inside the feasible set

• θt = θt−1 − 1
λ
∇ℓt−1(θt−1)

• Move θt to the closest point in K
This is called projected online gradient descent



FTRL in practice
• Can also use continuously-updated penalties, e.g. λt =

√
t

• A popular method is Adagrad
• Change Online Gradient Descent update to

θt = θt−1 −
1

λ
√∑t−1

s=1 ∇ℓ2s(θs)
∇ℓt−1(θt−1)

• For online gradient descent with constraint, we can enforce our
update to be inside the feasible set

• θt = θt−1 − 1
λ
∇ℓt−1(θt−1)

• Move θt to the closest point in K
This is called projected online gradient descent



FTRL in practice
• Can also use continuously-updated penalties, e.g. λt =

√
t

• A popular method is Adagrad
• Change Online Gradient Descent update to

θt = θt−1 −
1

λ
√∑t−1

s=1 ∇ℓ2s(θs)
∇ℓt−1(θt−1)

• For online gradient descent with constraint, we can enforce our
update to be inside the feasible set

• θt = θt−1 − 1
λ
∇ℓt−1(θt−1)

• Move θt to the closest point in K
This is called projected online gradient descent



Application: Electricity forecasting

• Toy example: predict weekly electricity consumption

• Task important for power companies, which must buy and sell
excess production on interchange markets

• Train 3 complicated statistical/machine learning models on training
set, then every week use their forecasts with incoming predictors
(temperature, season, etc) to predict that week’s usage

• Let λ =
√
t for online gradient descent



Application: Electricity forecasting

• Toy example: predict weekly electricity consumption

• Task important for power companies, which must buy and sell
excess production on interchange markets

• Train 3 complicated statistical/machine learning models on training
set, then every week use their forecasts with incoming predictors
(temperature, season, etc) to predict that week’s usage

• Let λ =
√
t for online gradient descent



Application: Electricity forecasting

• Toy example: predict weekly electricity consumption

• Task important for power companies, which must buy and sell
excess production on interchange markets

• Train 3 complicated statistical/machine learning models on training
set, then every week use their forecasts with incoming predictors
(temperature, season, etc) to predict that week’s usage

• Let λ =
√
t for online gradient descent



Results



Application: Ad-Click Prediction at Google

• Google implemented system to forecast probability of clicking on
ads (McMahan et al. 2013)

• Want system to automatically give new prediction for each ad, for
each customer

• Apply online method to update continuously and automatically

• Want to use ad and user-level attributes for prediction



Application: Ad-Click Prediction at Google

• Google implemented system to forecast probability of clicking on
ads (McMahan et al. 2013)

• Want system to automatically give new prediction for each ad, for
each customer

• Apply online method to update continuously and automatically

• Want to use ad and user-level attributes for prediction



Application: Ad-Click Prediction at Google

• Google implemented system to forecast probability of clicking on
ads (McMahan et al. 2013)

• Want system to automatically give new prediction for each ad, for
each customer

• Apply online method to update continuously and automatically

• Want to use ad and user-level attributes for prediction



Application: Ad-Click Prediction at Google
• Apply features in online logistic regression:

ℓt(θ) = −ytlogitθ(xt)− (1− yt)(1− logitθ(xt))

• Individual sites and each have own attributes (ie, each person’s
search history, etc)

• Need extreme speed and scale: use sparse prediction method, using
only a few coefficients at a time

• Approach: Linearized FTRL with particular choice of regularizer

θt that minimizes
t−1∑
s=1

∇ℓTs θt +
t−1∑
s=1

σs∥θt − θs∥2 + λ∥θt∥1



Application: Ad-Click Prediction at Google
• Apply features in online logistic regression:

ℓt(θ) = −ytlogitθ(xt)− (1− yt)(1− logitθ(xt))

• Individual sites and each have own attributes (ie, each person’s
search history, etc)

• Need extreme speed and scale: use sparse prediction method, using
only a few coefficients at a time

• Approach: Linearized FTRL with particular choice of regularizer

θt that minimizes
t−1∑
s=1

∇ℓTs θt +
t−1∑
s=1

σs∥θt − θs∥2 + λ∥θt∥1



Application: Ad-Click Prediction at Google
• Apply features in online logistic regression:

ℓt(θ) = −ytlogitθ(xt)− (1− yt)(1− logitθ(xt))

• Individual sites and each have own attributes (ie, each person’s
search history, etc)

• Need extreme speed and scale: use sparse prediction method, using
only a few coefficients at a time

• Approach: Linearized FTRL with particular choice of regularizer

θt that minimizes
t−1∑
s=1

∇ℓTs θt +
t−1∑
s=1

σs∥θt − θs∥2 + λ∥θt∥1



Application: Ad-Click Prediction at Google
• Apply features in online logistic regression:

ℓt(θ) = −ytlogitθ(xt)− (1− yt)(1− logitθ(xt))

• Individual sites and each have own attributes (ie, each person’s
search history, etc)

• Need extreme speed and scale: use sparse prediction method, using
only a few coefficients at a time

• Approach: Linearized FTRL with particular choice of regularizer

θt that minimizes
t−1∑
s=1

∇ℓTs θt +
t−1∑
s=1

σs∥θt − θs∥2 + λ∥θt∥1



Application: Ad-Click Prediction at Google

Approach: Linearized FTRL with particular choice of regularizer

θt that minimizes
t−1∑
s=1

∇ℓTs θt +
t−1∑
s=1

σs∥θt − θs∥2 + λ∥θt∥1

• Uses regularizer depending on whole past sequence of θs, plus
LASSO penalty

• Latter acts like Lasso penalty; former like square penality, but leads
to more computationally efficient updates


