Online convex optimization 2

Source: David Childer’s 73-423 note



Review

- Last time, we talked about two online learning algorithm:
Perceptron and Follow the Leader (FTL)

- We showed that FTL can have a worst-case regret of
order T'. We now introduce a new algorithm that, under
some conditions, can produce regret of order VT
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Follow the Regularized Leader (FTRL)

« Previously, we showed that FTL can be unstable when ¢,(0) — ¢,,1(0)
is large

- To avoid instability, we modify FTL by regularization:
. We choose a sequence of vectors 04, ..., 67 that minimizes the
regret
. After choosing 6;, we observe a loss ¢;(6;)
Example: 4,(0) = (0T z; — y;)?
At step t:
t—1
Choose 6, that minimizes Zes(et) + AR(0;)

s=1

where R is a regularizer
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Follow the Regularized Leader (FTRL)

Input: A regularization parameter A > 0

Initialize 6; € R?
for t=2to T do
1. Choose #, that minimizes S"'_% £,(6;) + AR(6,)

2. Receive new data point
3. Compute loss £,(6;)

end

Examples of R:

« Square regularizer: R(z) = 1||z|]3

« Entropic regularizer: R(x) = Z?Zl z;logx; over {x e R? : Y. 2, = 1,2, >0}
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Follow the Regularized Leader (FTRL)

Input: A regularization parameter A > 0
Initialize 6; € R?
for t =2to T do

1. Choose #, that minimizes S"'_% £,(6;) + AR(6,)
2. Receive new data point
3. Compute loss £,(6;)

end

Parameter A > 0 determines strength of the regularization: small values closer to FTL,
large values closer to minimizing R

Corresponds exactly to running regularized optimization each round
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Example 1: Online Linear Optimization

+ Adata stream: z,,...,2p € R?

. Let ¢,(6,) = 6]z, and use quadratic regularizer R(6,) = 36]|3

- FTRL update step is

t—1
1
Choose 6, that minimizes Z 0z, + iAHGtH;
s=1

« Solving the first-order condition for 6,,

1 1
0; = —X ;IES =01 — Xiﬂt—l
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parameter A > 0

Initialize the coefficients 6, € R¢
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Algorithm: Online Linear Optimization

Input: A stream of data 1, s, , ..., 27, where z; € R?, a regularized
parameter A > 0
Initialize the coefficients 6, € R¢

for t=2to 7T do
Oy = 0i1 — %xt—l
end

With \ ~ /T gives Regret, = VT
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Linearization

- Let ¢* minimize the total loss 3./ #,(6)

« Recall that if /; is convex, then for any 6,
0,(0%) > £0,(0,) + VL (0)T (07 — 6,

« Rearranging, we obtain
0(0,) — 0,(6%) < VL(0)T (0, — 67)

« Taking the sum over t,

IROESIUED DL

—0)
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Linearization

. Define 7,(8) = V{,(6,)"6. We can rewrite the right-hand side

ARSI Zé (60) = > 0(#)

+ In other words, B
Regret(¢1.7) < Regret,(¢1.7)

If the right-hand side is small, then so is the left-hand side

« Linearization trick: replace /¢; with /, in the FTRL algorithm
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Online Gradient Descent

« We will use the square regularizer:

t—1

Choose #; that minimizes Z VL (0,)70, + )\||9fH2

s=1

« Solving the first-order condition for 6;,

1 < 1
0, = _X ; V«gs(es)T =0i1 — XVEt—l(et—l)



Online Gradient Descent

Input: A regularization parameter A > 0
Initialize 6; € R?
for t =2to T do

1. Update Ht = 97571 - %Vﬁt,l(ﬁt,l)
2. Receive new data point
3. Compute loss gradient V4;(6;)

end
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FTRL in practice

« In practice, hard part of implementation is choosing regularization
parameter \

« Need to know time frame 7" which might not be possible

+ This has led to variety of modified algorithms which choose T’
adaptively

- If time frame not known, simple approach is doubling trick
. Set the first horizon T}
Fort=1,...,T1, run FTRL with A = /T
. When we reach T}, set T), .| = 2T},
Fort =T, +1, Tk +2,...,Tks1, run FTRL with A\ = /T},
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FTRL in practice

« Can also use continuously-updated penalties, e.g. \; = Vit

« A popular method is Adagrad
. Change Online Gradient Descent update to

1
61 =6, 1 — Vi1 (61)

A2 VE(G,)

« For online gradient descent with constraint, we can enforce our
update to be inside the feasible set

O =01 — 1V (6,)
. Move 6, to the closest point in £

This is called projected online gradient descent
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Application: Electricity forecasting

Toy example: predict weekly electricity consumption

Task important for power companies, which must buy and sell
excess production on interchange markets

Train 3 complicated statistical/machine learning models on training
set, then every week use their forecasts with incoming predictors
(temperature, season, etc) to predict that week’s usage

. Let A = /¢ for online gradient descent
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Application: Ad-Click Prediction at Google

Google implemented system to forecast probability of clicking on
ads (McMahan et al. 2013)

Want system to automatically give new prediction for each ad, for
each customer

Apply online method to update continuously and automatically

Want to use ad and user-level attributes for prediction
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- Individual sites and each have own attributes (ie, each person’s
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+ Need extreme speed and scale: use sparse prediction method, using
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Application: Ad-Click Prediction at Google

Approach: Linearized FTRL with particular choice of regularizer

t—1 t—1

0, that minimizes » VL0, + 3 0,10, — 0.]1* + Al[6: ]+

s=1 s=1

« Uses regularizer depending on whole past sequence of 4, plus
LASSO penalty

- Latter acts like Lasso penalty; former like square penality, but leads
to more computationally efficient updates



