Online convex optimization 2

Review

Last time, we talked about two online learning algorithm:
Perceptron and Follow the Leader (FTL)

• We showed that FTL can have a worst-case regret of order T. We now introduce a new algorithm that, under some conditions, can produce regret of order \sqrt{T}

• Previously, we showed that FTL can be unstable when $\ell_t(\theta) - \ell_{t+1}(\theta)$ is large

- Previously, we showed that FTL can be unstable when $\ell_t(\theta) \ell_{t+1}(\theta)$ is large
- To avoid instability, we modify FTL by regularization:

• Previously, we showed that FTL can be unstable when $\ell_t(\theta) - \ell_{t+1}(\theta)$ is large

- To avoid instability, we modify FTL by regularization:
 - . We choose a sequence of vectors θ_1,\dots,θ_T that minimizes the regret

- Previously, we showed that FTL can be unstable when $\ell_t(\theta) \ell_{t+1}(\theta)$ is large
- To avoid instability, we modify FTL by regularization:
 - . We choose a sequence of vectors $\theta_1, \dots, \theta_T$ that minimizes the regret
 - . After choosing θ_t , we observe a loss $\ell_t(\theta_t)$ Example: $\ell_t(\theta) = (\theta^T x_t y_t)^2$

- Previously, we showed that FTL can be unstable when $\ell_t(\theta) \ell_{t+1}(\theta)$ is large
- To avoid instability, we modify FTL by regularization:
 - . We choose a sequence of vectors θ_1,\dots,θ_T that minimizes the regret
 - After choosing θ_t , we observe a loss $\ell_t(\theta_t)$ Example: $\ell_t(\theta) = (\theta^T x_t y_t)^2$

At step *t*:

Choose
$$\theta_t$$
 that minimizes $\sum_{i=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$

where R is a regularizer

Input: A regularization parameter $\lambda > 0$

Input: A regularization parameter $\lambda > 0$

Initialize $\theta_1 \in \mathbb{R}^d$

Input: A regularization parameter $\lambda > 0$

Initialize $\theta_1 \in \mathbb{R}^d$

for t = 2 to T do

1. Choose θ_t that minimizes $\sum_{s=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$

Input: A regularization parameter $\lambda > 0$

Initialize $\theta_1 \in \mathbb{R}^d$

for t = 2 to T do

- 1. Choose θ_t that minimizes $\sum_{s=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$
- 2. Receive new data point

Input: A regularization parameter $\lambda > 0$

```
Initialize \theta_1 \in \mathbb{R}^d
```

for t = 2 to T do

- 1. Choose θ_t that minimizes $\sum_{s=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$
- 2. Receive new data point
- 3. Compute loss $\ell_t(\theta_t)$

end

Input: A regularization parameter $\lambda > 0$

```
Initialize \theta_1 \in \mathbb{R}^d
```

for t = 2 to T do

- 1. Choose θ_t that minimizes $\sum_{s=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$
- 2. Receive new data point
- 3. Compute loss $\ell_t(\theta_t)$

end

Examples of R:

• Square regularizer: $R(x) = \frac{1}{2} ||x||_2^2$

Input: A regularization parameter $\lambda > 0$

```
Initialize \theta_1 \in \mathbb{R}^d
```

for t = 2 to T do

- 1. Choose θ_t that minimizes $\sum_{s=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$
- 2. Receive new data point
- 3. Compute loss $\ell_t(\theta_t)$

end

Examples of R:

- Square regularizer: $R(x) = \frac{1}{2} ||x||_2^2$
- Entropic regularizer: $R(x) = \sum_{i=1}^d x_i \log x_i$ over $\{x \in \mathbb{R}^d : \sum_i x_i = 1, x_i \geq 0\}$

Input: A regularization parameter $\lambda > 0$

Initialize $\theta_1 \in \mathbb{R}^d$

for t = 2 to T do

- 1. Choose θ_t that minimizes $\sum_{s=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$
- 2. Receive new data point
- 3. Compute loss $\ell_t(\theta_t)$

end

Parameter $\lambda>0$ determines strength of the regularization: small values closer to FTL, large values closer to minimizing R

Input: A regularization parameter $\lambda > 0$

Initialize $\theta_1 \in \mathbb{R}^d$

for t = 2 to T do

- 1. Choose θ_t that minimizes $\sum_{s=1}^{t-1} \ell_s(\theta_t) + \lambda R(\theta_t)$
- 2. Receive new data point
- 3. Compute loss $\ell_t(\theta_t)$

end

Parameter $\lambda>0$ determines strength of the regularization: small values closer to FTL, large values closer to minimizing R

Corresponds exactly to running regularized optimization each round

• A data stream: $x_1, \ldots, x_T \in \mathbb{R}^d$

- A data stream: $x_1, \ldots, x_T \in \mathbb{R}^d$
- Let $\ell_t(\theta_t) = \theta_t^T x_t$ and use quadratic regularizer $R(\theta_t) = \frac{1}{2} \|\theta\|_2^2$

- A data stream: $x_1, \ldots, x_T \in \mathbb{R}^d$
- Let $\ell_t(\theta_t) = \theta_t^T x_t$ and use quadratic regularizer $R(\theta_t) = \frac{1}{2} \|\theta\|_2^2$
- FTRL update step is

Choose
$$\theta_t$$
 that minimizes $\sum_{t=1}^{t-1} \theta_t^T x_s + \frac{1}{2} \lambda \|\theta_t\|_2^2$

- A data stream: $x_1, \ldots, x_T \in \mathbb{R}^d$
- Let $\ell_t(\theta_t) = \theta_t^T x_t$ and use quadratic regularizer $R(\theta_t) = \frac{1}{2} \|\theta\|_2^2$
- FTRL update step is

Choose
$$\theta_t$$
 that minimizes $\sum_{t=1}^{t-1} \theta_t^T x_s + \frac{1}{2} \lambda \|\theta_t\|_2^2$

• Solving the first-order condition for θ_t ,

$$\theta_t = -\frac{1}{\lambda} \sum_{s=1}^{t-1} x_s = \theta_{t-1} - \frac{1}{\lambda} x_{t-1}$$

Algorithm: Online Linear Optimization

Input: A stream of data x_1, x_2, \dots, x_T , where $x_t \in \mathbb{R}^d$, a regularized parameter $\lambda > 0$

Initialize the coefficients
$$\theta_1 \in \mathbb{R}^d$$

for $t = 2$ to T do
 $\theta_t = \theta_{t-1} - \frac{1}{\lambda}x_{t-1}$
end

Algorithm: Online Linear Optimization

Input: A stream of data x_1, x_2, \dots, x_T , where $x_t \in \mathbb{R}^d$, a regularized parameter $\lambda > 0$

Initialize the coefficients $\theta_1 \in \mathbb{R}^d$ for t = 2 to T do $\theta_t = \theta_{t-1} - \frac{1}{\lambda}x_{t-1}$ end

With
$$\lambda \approx \sqrt{T}$$
 gives $\operatorname{Regret}_T = \sqrt{T}$

- Let θ^* minimize the total loss $\sum_{t=1}^T \ell_t(\theta)$

- Let θ^* minimize the total loss $\sum_{t=1}^T \ell_t(\theta)$
- Recall that if ℓ_t is convex, then for any θ_t ,

$$\ell_t(\theta^*) \ge \ell_t(\theta_t) + \nabla \ell_t(\theta_t)^T (\theta^* - \theta_t)$$

- Let θ^* minimize the total loss $\sum_{t=1}^T \ell_t(\theta)$
- Recall that if ℓ_t is convex, then for any θ_t ,

$$\ell_t(\theta^*) \ge \ell_t(\theta_t) + \nabla \ell_t(\theta_t)^T (\theta^* - \theta_t)$$

Rearranging, we obtain

$$\ell_t(\theta_t) - \ell_t(\theta^*) \le \nabla \ell_t(\theta_t)^T (\theta_t - \theta^*)$$

- Let θ^* minimize the total loss $\sum_{t=1}^{T} \ell_t(\theta)$
- Recall that if ℓ_t is convex, then for any θ_t ,

$$\ell_t(\theta^*) \ge \ell_t(\theta_t) + \nabla \ell_t(\theta_t)^T (\theta^* - \theta_t)$$

· Rearranging, we obtain

$$\ell_t(\theta_t) - \ell_t(\theta^*) \le \nabla \ell_t(\theta_t)^T (\theta_t - \theta^*)$$

Taking the sum over t,

$$\sum_{t=1}^{T} \ell_t(\theta_t) - \sum_{t=1}^{T} \ell_t(\theta^*) \le \sum_{t=1}^{T} \nabla \ell_t(\theta_t)^T (\theta_t - \theta^*)$$

• Define $\tilde{\ell}_t(\theta) = \nabla \ell_t(\theta_t)^T \theta$. We can rewrite the right-hand side

$$\sum_{t=1}^{T} \ell_t(\theta_t) - \sum_{t=1}^{T} \ell_t(\theta^*) \le \sum_{t=1}^{T} \tilde{\ell}_t(\theta_t) - \sum_{t=1}^{T} \tilde{\ell}_t(\theta^*)$$

• Define $\tilde{\ell}_t(\theta) = \nabla \ell_t(\theta_t)^T \theta$. We can rewrite the right-hand side

$$\sum_{t=1}^{T} \ell_t(\theta_t) - \sum_{t=1}^{T} \ell_t(\theta^*) \le \sum_{t=1}^{T} \tilde{\ell}_t(\theta_t) - \sum_{t=1}^{T} \tilde{\ell}_t(\theta^*)$$

• In other words,

$$\operatorname{Regret}_T(\ell_{1:T}) \leq \operatorname{Regret}_T(\tilde{\ell}_{1:T})$$

If the right-hand side is small, then so is the left-hand side

• Define $\tilde{\ell}_t(\theta) = \nabla \ell_t(\theta_t)^T \theta$. We can rewrite the right-hand side

$$\sum_{t=1}^{T} \ell_t(\theta_t) - \sum_{t=1}^{T} \ell_t(\theta^*) \le \sum_{t=1}^{T} \tilde{\ell}_t(\theta_t) - \sum_{t=1}^{T} \tilde{\ell}_t(\theta^*)$$

· In other words,

$$\operatorname{Regret}_{T}(\ell_{1:T}) \leq \operatorname{Regret}_{T}(\tilde{\ell}_{1:T})$$

If the right-hand side is small, then so is the left-hand side

• Linearization trick: replace ℓ_t with $\tilde{\ell}_t$ in the FTRL algorithm

Online Gradient Descent

• We will use the square regularizer:

Choose
$$\theta_t$$
 that minimizes $\sum_{t=1}^{t-1} \nabla \ell_s(\theta_s)^T \theta_t + \frac{1}{2} \lambda \|\theta_t\|_2^2$

Online Gradient Descent

• We will use the square regularizer:

Choose
$$\theta_t$$
 that minimizes $\sum_{s=1}^{t-1} \nabla \ell_s(\theta_s)^T \theta_t + \frac{1}{2} \lambda \|\theta_t\|_2^2$

• Solving the first-order condition for θ_t ,

$$\frac{\theta_t}{\theta_t} = -\frac{1}{\lambda} \sum_{s=1}^{t-1} \nabla \ell_s(\theta_s)^T = \theta_{t-1} - \frac{1}{\lambda} \nabla \ell_{t-1}(\theta_{t-1})$$

Online Gradient Descent

Input: A regularization parameter $\lambda > 0$

Initialize $\theta_1 \in \mathbb{R}^d$

for t = 2 to T do

- 1. Update $\theta_t = \theta_{t-1} \frac{1}{\lambda} \nabla \ell_{t-1}(\theta_{t-1})$
- 2. Receive new data point
- 3. Compute loss gradient $\nabla \ell_t(\theta_t)$

end

- In practice, hard part of implementation is choosing regularization parameter λ

- In practice, hard part of implementation is choosing regularization parameter λ
- Need to know time frame T which might not be possible

- In practice, hard part of implementation is choosing regularization parameter λ
- Need to know time frame T which might not be possible
- This has led to variety of modified algorithms which choose ${\cal T}$ adaptively

- In practice, hard part of implementation is choosing regularization parameter λ
- Need to know time frame T which might not be possible
- This has led to variety of modified algorithms which choose T adaptively
- If time frame not known, simple approach is doubling trick
 - · Set the first horizon T_1

For
$$t = 1, ..., T_1$$
, run FTRL with $\lambda = \sqrt{T_1}$

- In practice, hard part of implementation is choosing regularization parameter λ
- Need to know time frame T which might not be possible
- This has led to variety of modified algorithms which choose ${\cal T}$ adaptively
- If time frame not known, simple approach is doubling trick
 - Set the first horizon T_1 For $t = 1, ..., T_1$, run FTRL with $\lambda = \sqrt{T_1}$
 - . When we reach T_k , set $T_{k+1} = 2T_k$ For $t = T_k + 1, T_k + 2, \dots, T_{k+1}$, run FTRL with $\lambda = \sqrt{T_k}$

• Can also use continuously-updated penalties, e.g. $\lambda_t = \sqrt{t}$

- Can also use continuously-updated penalties, e.g. $\lambda_t = \sqrt{t}$
- · A popular method is Adagrad
 - · Change Online Gradient Descent update to

$$\theta_t = \theta_{t-1} - \frac{1}{\lambda \sqrt{\sum_{s=1}^{t-1} \nabla \ell_s^2(\theta_s)}} \nabla \ell_{t-1}(\theta_{t-1})$$

- Can also use continuously-updated penalties, e.g. $\lambda_t = \sqrt{t}$
- · A popular method is Adagrad
 - · Change Online Gradient Descent update to

$$\theta_t = \theta_{t-1} - \frac{1}{\lambda \sqrt{\sum_{s=1}^{t-1} \nabla \ell_s^2(\theta_s)}} \nabla \ell_{t-1}(\theta_{t-1})$$

- For online gradient descent with constraint, we can enforce our update to be inside the feasible set
 - $\theta_t = \theta_{t-1} \frac{1}{\lambda} \nabla \ell_{t-1}(\theta_{t-1})$
 - · Move θ_t to the closest point in \mathcal{K}

This is called projected online gradient descent

Application: Electricity forecasting

- Toy example: predict weekly electricity consumption
- Task important for power companies, which must buy and sell excess production on interchange markets

Application: Electricity forecasting

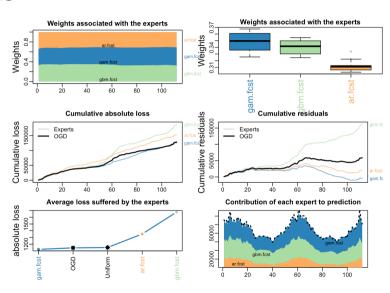
- Toy example: predict weekly electricity consumption
- Task important for power companies, which must buy and sell excess production on interchange markets

 Train 3 complicated statistical/machine learning models on training set, then every week use their forecasts with incoming predictors (temperature, season, etc) to predict that week's usage

Application: Electricity forecasting

- Toy example: predict weekly electricity consumption
- Task important for power companies, which must buy and sell excess production on interchange markets
- Train 3 complicated statistical/machine learning models on training set, then every week use their forecasts with incoming predictors (temperature, season, etc) to predict that week's usage
- Let $\lambda = \sqrt{t}$ for online gradient descent

Results



- Google implemented system to forecast probability of clicking on ads (McMahan et al. 2013)
- Want system to automatically give new prediction for each ad, for each customer

- Google implemented system to forecast probability of clicking on ads (McMahan et al. 2013)
- Want system to automatically give new prediction for each ad, for each customer

Apply online method to update continuously and automatically

- Google implemented system to forecast probability of clicking on ads (McMahan et al. 2013)
- Want system to automatically give new prediction for each ad, for each customer

- Apply online method to update continuously and automatically
- Want to use ad and user-level attributes for prediction

• Apply features in online logistic regression:

$$\ell_t(\theta) = -y_t \operatorname{logit}_{\theta}(x_t) - (1 - y_t)(1 - \operatorname{logit}_{\theta}(x_t))$$

• Apply features in online logistic regression:

$$\ell_t(\theta) = -y_t \operatorname{logit}_{\theta}(x_t) - (1 - y_t)(1 - \operatorname{logit}_{\theta}(x_t))$$

 Individual sites and each have own attributes (ie, each person's search history, etc)

Apply features in online logistic regression:

$$\ell_t(\theta) = -y_t \operatorname{logit}_{\theta}(x_t) - (1 - y_t)(1 - \operatorname{logit}_{\theta}(x_t))$$

- Individual sites and each have own attributes (ie, each person's search history, etc)
- Need extreme speed and scale: use sparse prediction method, using only a few coefficients at a time

• Apply features in online logistic regression:

$$\ell_t(\theta) = -y_t \operatorname{logit}_{\theta}(x_t) - (1 - y_t)(1 - \operatorname{logit}_{\theta}(x_t))$$

- Individual sites and each have own attributes (ie, each person's search history, etc)
- Need extreme speed and scale: use sparse prediction method, using only a few coefficients at a time
- Approach: Linearized FTRL with particular choice of regularizer

$$\theta_t$$
 that minimizes $\sum_{s=1}^{t-1} \nabla \ell_s^T \theta_t + \sum_{s=1}^{t-1} \sigma_s \|\theta_t - \theta_s\|^2 + \lambda \|\theta_t\|_1$

Approach: Linearized FTRL with particular choice of regularizer

$$\theta_t$$
 that minimizes
$$\sum_{s=1}^{t-1} \nabla \ell_s^T \theta_t + \sum_{s=1}^{t-1} \sigma_s \|\theta_t - \theta_s\|^2 + \lambda \|\theta_t\|_1$$

- Uses regularizer depending on whole past sequence of θ_s , plus LASSO penalty
- Latter acts like Lasso penalty; former like square penality, but leads to more computationally efficient updates