Homework 1

Instructions

e Conceptual Problems: Show all steps in your derivations. You may use standard matrix
calculus identities derived in class.

e Programming Problems: You must use Python and the JAX library as demonstrated in
the lecture notes. Submit your code and the resulting output (plots or printed values).

Part A: Conceptual Problems

Problem 1: Taylor Approximations and Curvature (Chapter 1)
Consider the function of two variables f : R? — R defined by:
flxy,20) = x:f + x% — 3z129
1. Compute the gradient vector V f(x).
2. Find the critical points of the function (where V f(x) = 0).
3. Compute the Hessian matrix V2f(x).

4. Evaluate the Hessian at each critical point found in part (2). Based on the eigenvalues of the
Hessian (or the determinant/trace test), classify each critical point as a local minimum, local
maximum, or saddle point.

Problem 2: Matrix Calculus and Ridge Regression (Chapter 2)

In Lecture 2, we derived the Normal Equations for Ordinary Least Squares (OLS) by minimizing
|| XB—yl|3. A common modification to OLS to prevent overfitting is called Ridge Regression, which
adds a penalty term proportional to the square of the magnitude of the coefficient vector.

The objective function for Ridge Regression is:

F(B) = |1XB —yl|3 + M|BI3

where A > 0 is a scalar constant, X € R™*"™ ¢y € R™ and g € R".

1. Expand the term || X — y||3 into matrix-vector products (as done in the lecture notes).

2. Rewrite the penalty term \||3]|2 using vector dot product notation (involving 87).
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3. Compute the gradient Vg f(5) with respect to £.

4. Set the gradient to zero and solve for the optimal B This result is known as the Ridge
Estimator.

5. Compute the Hessian V% f(B). Is the Hessian positive definite? (Assume A > 0).

Problem 3: MLE for the Exponential Distribution (Chapter 3)

The Exponential distribution is often used to model the time until an event occurs. The probability
density function (PDF) for a single observation x is:

p(x|) = Ae A

where A > 0 is the rate parameter and =z > 0.
Suppose we observe an independent and identically distributed (i.i.d.) dataset D = {z1,22,...,2N}.

1. Write down the Likelihood function L(\) for the dataset D.
2. Write down the Log-Likelihood function £(\) = log L(\).

3. To find the Maximum Likelihood Estimate (MLE), computing the derivative % and set it to
zero.

4. Solve for the optimal parameter A in terms of the data points x;.

5. Compute the second derivative 3—/2\5 and verify that your solution corresponds to a maximum.
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Part B: Programming Problems (JAX)

Problem 4: Gradient Verification for Ridge Regression

You derived the analytic gradient for Ridge Regression in Problem 2. Now you will verify it
numerically using JAX.
Task:

1.

Generate synthetic data:

e Create a random matrix X € R%0%3,
e Create a random target vector y € R,
e Create a random initial weight vector 5 € R°.

e Set the regularization parameter A = 10.0.

. Define the Ridge Regression loss function in JAX:

loss(B) = (XB —y)"(XB—y) + A3T8

. Use jax.grad to compute the gradient of this loss at your random g.

. Implement the analytic gradient formula you derived in Problem 2 (Part 3) as a Python

function.

. Compute the analytic gradient using the same data.

. Use jax.numpy.allclose to assert that the JAX-computed gradient and your analytic gra-

dient are identical (within numerical precision). Print the result.

Problem 5: MLE Verification via Gradient Checking

In Problem 3, you derived the MLE for the Exponential distribution. Here, we will use JAX to
confirm that the gradient of the Negative Log-Likelihood (NLL) is indeed zero at the analytic

solution.
Task:

1.

Generate synthetic data: Create an array of 100 samples drawn from an exponential distri-
bution with a true rate Ayye = 4.0. (You can use jax.random.exponential, note that JAX
usually parameterizes by scale 1/, so adjust accordingly or generate simple uniform numbers
and transform them).

. Compute the analytic MLE A using the formula you derived in Problem 3 (Part 4).

. Define the Negative Log-Likelihood (NLL) function for the exponential distribution in JAX.

(Note: Optimization usually minimizes, so we minimize negative log-likelihood).

. Create a gradient function using jax.grad for the NLL.

. Evaluate the gradient of the NLL at your analytic solution A

Print the value of the gradient. It should be very close to 0. Explain why this confirms your
derivation.



