
Homework 1

Instructions

• Conceptual Problems: Show all steps in your derivations. You may use standard matrix
calculus identities derived in class.

• Programming Problems: You must use Python and the JAX library as demonstrated in
the lecture notes. Submit your code and the resulting output (plots or printed values).

Part A: Conceptual Problems

Problem 1: Taylor Approximations and Curvature (Chapter 1)

Consider the function of two variables f : R2 → R defined by:

f(x1, x2) = x31 + x32 − 3x1x2

1. Compute the gradient vector ∇f(x).

2. Find the critical points of the function (where ∇f(x) = 0).

3. Compute the Hessian matrix ∇2f(x).

4. Evaluate the Hessian at each critical point found in part (2). Based on the eigenvalues of the
Hessian (or the determinant/trace test), classify each critical point as a local minimum, local
maximum, or saddle point.

Problem 2: Matrix Calculus and Ridge Regression (Chapter 2)

In Lecture 2, we derived the Normal Equations for Ordinary Least Squares (OLS) by minimizing
||Xβ−y||22. A common modification to OLS to prevent overfitting is called Ridge Regression, which
adds a penalty term proportional to the square of the magnitude of the coefficient vector.

The objective function for Ridge Regression is:

f(β) = ||Xβ − y||22 + λ||β||22

where λ > 0 is a scalar constant, X ∈ Rm×n, y ∈ Rm, and β ∈ Rn.

1. Expand the term ||Xβ − y||22 into matrix-vector products (as done in the lecture notes).

2. Rewrite the penalty term λ||β||22 using vector dot product notation (involving βT ).
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3. Compute the gradient ∇βf(β) with respect to β.

4. Set the gradient to zero and solve for the optimal β̂. This result is known as the Ridge
Estimator.

5. Compute the Hessian ∇2
βf(β). Is the Hessian positive definite? (Assume λ > 0).

Problem 3: MLE for the Exponential Distribution (Chapter 3)

The Exponential distribution is often used to model the time until an event occurs. The probability
density function (PDF) for a single observation x is:

p(x|λ) = λe−λx

where λ > 0 is the rate parameter and x ≥ 0.
Suppose we observe an independent and identically distributed (i.i.d.) datasetD = {x1, x2, . . . , xN}.

1. Write down the Likelihood function L(λ) for the dataset D.

2. Write down the Log-Likelihood function ℓ(λ) = logL(λ).

3. To find the Maximum Likelihood Estimate (MLE), computing the derivative dℓ
dλ and set it to

zero.

4. Solve for the optimal parameter λ̂ in terms of the data points xi.

5. Compute the second derivative d2ℓ
dλ2 and verify that your solution corresponds to a maximum.
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Part B: Programming Problems (JAX)

Problem 4: Gradient Verification for Ridge Regression

You derived the analytic gradient for Ridge Regression in Problem 2. Now you will verify it
numerically using JAX.

Task:

1. Generate synthetic data:

• Create a random matrix X ∈ R50×5.

• Create a random target vector y ∈ R50.

• Create a random initial weight vector β ∈ R5.

• Set the regularization parameter λ = 10.0.

2. Define the Ridge Regression loss function in JAX:

loss(β) = (Xβ − y)T (Xβ − y) + λβTβ

3. Use jax.grad to compute the gradient of this loss at your random β.

4. Implement the analytic gradient formula you derived in Problem 2 (Part 3) as a Python
function.

5. Compute the analytic gradient using the same data.

6. Use jax.numpy.allclose to assert that the JAX-computed gradient and your analytic gra-
dient are identical (within numerical precision). Print the result.

Problem 5: MLE Verification via Gradient Checking

In Problem 3, you derived the MLE for the Exponential distribution. Here, we will use JAX to
confirm that the gradient of the Negative Log-Likelihood (NLL) is indeed zero at the analytic
solution.

Task:

1. Generate synthetic data: Create an array of 100 samples drawn from an exponential distri-
bution with a true rate λtrue = 4.0. (You can use jax.random.exponential, note that JAX
usually parameterizes by scale 1/λ, so adjust accordingly or generate simple uniform numbers
and transform them).

2. Compute the analytic MLE λ̂ using the formula you derived in Problem 3 (Part 4).

3. Define the Negative Log-Likelihood (NLL) function for the exponential distribution in JAX.
(Note: Optimization usually minimizes, so we minimize negative log-likelihood).

4. Create a gradient function using jax.grad for the NLL.

5. Evaluate the gradient of the NLL at your analytic solution λ̂.

6. Print the value of the gradient. It should be very close to 0. Explain why this confirms your
derivation.
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