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Chapter 1

Probability Fundamentals

The concept of probability has been a subject of debate among mathematicians
and philosophers. Some view probabilities as long-run frequencies of events that
can be repeated under identical conditions (frequentists), while others see them
as a quantification of an individual’s subjective degree of uncertainty (subjec-
tivists). Regardless of the interpretation, the fundamental principles of combin-
ing probabilities can be understood by thinking about proportions.

1.1 Outcome Space and Events

Definition 1.1.1 (Outcome Space). An experiment involving randomness re-
sults in one of several possible outcomes. The outcome space, denoted by Ω,
is the set of all possible outcomes. For now, we assume Ω is a finite set.

Definition 1.1.2 (Outcome). An outcome, denoted by ω, is an element of the
outcome space Ω.

Definition 1.1.3 (Event). An event is a subset of the outcome space Ω. Events
are typically denoted by capital letters like A,B,C. The empty set ∅ and the
entire space Ω are also considered events.

Example 1.1.4 (Permutations). Consider shuffling three cards labeled a, b, c.
The outcome space is the set of all possible permutations:

Ω = {abc, acb, bac, bca, cab, cba}

Here are some examples of events:

• Event A: ”a appears first”. This corresponds to the subset A = {abc, acb}.

• Event B: ”b and c are not next to each other”. This corresponds to the
subset B = {bac, cab}.

• Event C: ”the letters are in alphabetical order”. This corresponds to the subset
C = {abc}.

7
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Example 1.1.5 (Coin Tossing). For three tosses of a coin, the outcome space
is:

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

The event ”no two consecutive tosses land the same way” is the subset {HTH,THT}.

1.2 Equally Likely Outcomes

A simple and powerful model for randomness is the assumption of equally likely
outcomes. This model defines probabilities as proportions. Let Ω be a finite
outcome space with n = #(Ω) outcomes.

Definition 1.2.1 (Probability with Equally Likely Outcomes). If all n outcomes
in Ω are assumed to be equally likely, then the probability of an event A ⊆ Ω is
defined as:

P (A) =
#(A)

#(Ω)
=

#(A)

n

where #(A) is the number of outcomes in the event A.

Example 1.2.2 (Random Permutations). Let Ω be the space of all permuta-
tions of the letters a, b, c. We have #(Ω) = 6. If we assume all permutations are
equally likely, we can calculate the probabilities of the events defined earlier:

• P (A) = P (a appears first) = #{abc,acb}
6 = 2

6 = 1
3 .

• P (C) = P (the letters are in alphabetical order) = #{abc}
6 = 1

6 .

Example 1.2.3 (Random Number Generator). A random number generator
produces a pair of digits from 00 to 99, with all 100 pairs being equally likely.

• The probability that the pair consists of two different digits is calculated as
follows: There are 10 choices for the first digit, and for each choice, there
are 9 choices for the second digit. So, there are 10 × 9 = 90 such pairs.
The probability is 90

100 = 0.9.

• The probability that the two digits are the same can be found by comple-
menting the previous event: 1−0.9 = 0.1. Alternatively, there are 10 pairs
with identical digits (00, 11, ..., 99), so the probability is 10

100 = 0.1.

1.3 Collisions in Hashing

In computer science, a hash function assigns a hash value to each individual in
a set. A collision occurs when two individuals are assigned the same hash value.

Let’s assume there are N hash values and n individuals, and that all Nn

possible assignments of values to individuals are equally likely. An assignment
is a sequence a0, a1, . . . , an−1 where individual i is assigned hash value ai.
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1.3.1 Probability of No Collisions

We want to find the probability that there are no collisions, assuming n ≤ N .
The number of ways to assign hash values with no collisions is the number of
sequences (a0, a1, . . . , an−1) where all the ai are distinct.

• There are N choices for a0.

• There are N − 1 choices for a1 (it must be different from a0).

• There are N − 2 choices for a2 (different from a0 and a1).

• ...

• There are N − (n− 1) choices for an−1.

The total number of assignments with no collisions is N(N −1)(N −2) · · · (N −
n+ 1). The probability of no collisions is:

P (no collisions) =
N(N − 1)(N − 2) · · · (N − n+ 1)

Nn

This can also be written as a product of fractions:

P (no collisions) =

n−1∏
i=0

N − i

N
=

N

N
· N − 1

N
· N − 2

N
· · · N − n+ 1

N

1.3.2 Probability of at Least One Collision

The event ”at least one collision” is the complement of the event ”no collisions”.
Therefore, its probability is:

P (at least one collision) = 1− P (no collisions) = 1−
n−1∏
i=0

N − i

N

1.4 The Birthday Problem

The birthday problem is a classic application of collision probability. It asks for
the probability that in a group of n people, at least two share a birthday.

1.4.1 Assumptions

We make the following simplifying assumptions:

• There are N = 365 days in a year.

• Each person is equally likely to be born on any of the 365 days, indepen-
dently of the others.

These assumptions mean that all 365n sequences of birthdays are equally likely.
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1.4.2 The Chance of a Match

The problem is equivalent to the hashing problem with N = 365. A ”match” is
a collision. The probability of no match (all birthdays are different) is:

P (no match) =

n−1∏
i=0

365− i

365

The probability of at least one match is:

P (at least one match) = 1−
n−1∏
i=0

365− i

365

1.4.3 The Birthday ”Paradox”

The probability of a match increases sharply with n. With just 23 people, the
probability of a match is greater than 50

1.5 An Exponential Approximation

To better understand the behavior of the collision probability, we can derive an
approximation for P (no collision).

1. Approximate the log of the probability: It’s easier to work with sums
than products.

log(P (no collision)) = log

(
n−1∏
i=0

N − i

N

)
=

n−1∑
i=0

log

(
1− i

N

)
2. Use the Taylor approximation for log: For small x, we have log(1 +

x) ≈ x. For our case, this is log(1− i/N) ≈ −i/N . This approximation is
good when i/N is small.

n−1∑
i=0

log

(
1− i

N

)
≈

n−1∑
i=0

(
− i

N

)
= − 1

N

n−1∑
i=0

i

3. Sum the series: The sum of the first n− 1 integers is (n−1)n
2 .

− 1

N

n−1∑
i=0

i = −n(n− 1)

2N

4. Exponentiate to get the approximation for the probability:

P (no collision) ≈ e−
n(n−1)

2N

For large n, we can further approximate this as e−
n2

2N .



1.5. AN EXPONENTIAL APPROXIMATION 11

So, the probability of at least one collision can be approximated by:

P (at least one collision) ≈ 1− e−
n(n−1)

2N ≈ 1− e−
n2

2N

This approximation is very accurate, even for moderate values of n. It clearly
shows why the probability of a match in the birthday problem grows quickly
with n, as the term in the exponent is quadratic in n.
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Chapter 2

Calculating Probabilities

2.1 Axioms of Probability

When dealing with situations where outcomes are not equally likely, a more
general framework is needed. The foundation of modern probability theory is
based on a set of axioms formulated by Andrey Kolmogorov.

We begin with an outcome space Ω, which for now we assume is finite.
Probability is a function P defined on events (subsets of Ω). The axioms are:

1. Non-negativity: For any event A, P (A) ≥ 0.

2. Total Probability: The probability of the entire outcome space is 1, i.e.,
P (Ω) = 1.

3. Additivity for Mutually Exclusive Events: If events A1, A2, . . . are
mutually exclusive (i.e., they don’t intersect), then the probability of their
union is the sum of their individual probabilities. For two events A and B
with A ∩B = ∅, this means P (A ∪B) = P (A) + P (B).

2.2 The Addition Rule

From the basic axioms, we can derive rules for calculating the probability of
unions of events that are not mutually exclusive. The general addition rule for
two events A and B is:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

The term P (A∩B) is subtracted because it is counted in both P (A) and P (B),
so we must remove the double-counting.

Remark. This leads to a useful inequality known as Boole’s Inequality: P (A ∪
B) ≤ P (A) + P (B).

13
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2.2.1 Complement Rule

For any event A, its complement is Ac = Ω \ A. Since A and Ac are mutually
exclusive and their union is Ω, we have P (A) + P (Ac) = P (Ω) = 1. This gives
the complement rule:

P (A) = 1− P (Ac)

2.2.2 Difference Rule

If event A implies event B (i.e., A ⊆ B), then the probability of the event ”B
and not A” is given by:

P (B \A) = P (B)− P (A)

2.3 Examples of the Addition Rule

Example 2.3.1 (Both Heads and Tails in n Tosses). A coin is tossed n times.
All 2n sequences of heads and tails are equally likely. What is the chance of
getting at least one head and at least one tail?

Let A be the event of getting at least one head and at least one tail. The
complement event, Ac, is that we *don’t* get both faces. This means all the
tosses result in the same face. The only two outcomes in Ac are ”all heads”
(HHHH...) and ”all tails” (TTTT...). So, the number of outcomes in the com-
plement event is #(Ac) = 2. The probability of the complement is:

P (Ac) =
#(Ac)

#(Ω)
=

2

2n
=

1

2n−1

Using the complement rule, the probability of event A is:

P (A) = 1− P (Ac) = 1− 1

2n−1

Example 2.3.2 (Maximum of 12 Rolls of a Die). A die is rolled 12 times. What
is the probability that the maximum roll is 4?

Let M be the maximum value of the 12 rolls. We want to find P (M = 4).
This is equivalent to the event ”the maximum is less than or equal to 4” AND
”the maximum is not less than 4”. Using the difference rule, we can write:
P (M = 4) = P (M ≤ 4)− P (M ≤ 3).

The event M ≤ 4 is equivalent to all 12 rolls being less than or equal to 4.
For each roll, there are 4 possible outcomes (1, 2, 3, 4). Since there are 12 rolls,
the number of such sequences is 412. The total number of possible sequences is
612. So:

P (M ≤ 4) =
412

612

Similarly, the event M ≤ 3 is equivalent to all 12 rolls being less than or equal
to 3. There are 312 such sequences.

P (M ≤ 3) =
312

612



2.4. THE MULTIPLICATION RULE 15

Therefore, the probability that the maximum is exactly 4 is:

P (M = 4) =
412

612
− 312

612
=

412 − 312

612

2.4 The Multiplication Rule

2.4.1 Conditional Probability

Let A and B be two events. The conditional probability of B given A,
denoted P (B|A), is the probability that B occurs given that A has already
occurred. It is defined by the division rule:

P (B|A) = P (A ∩B)

P (A)

provided that P (A) > 0. Given that A happened, we restrict our focus to the
outcomes in A. The chance that B also happens is the proportion of these
outcomes that are also in B.

2.4.2 Multiplication Rule

By rearranging the definition of conditional probability, we get the multiplica-
tion rule, which is extremely useful for calculating the probability of the inter-
section of events:

P (A ∩B) = P (A)P (B|A)

This rule is used to calculate the chance of a sequence of events occurring.

Example 2.4.1 (Two Aces). Two cards are dealt from a standard 52-card deck
without replacement. What is the chance that both are aces? Let A1 be the
event that the first card is an ace, and A2 be the event that the second card is
an ace. We want to find P (A1 ∩A2).

• The probability of the first card being an ace is P (A1) =
4
52 .

• Given that the first card was an ace, there are now 51 cards left in the
deck, and 3 of them are aces. So, P (A2|A1) =

3
51 .

Using the multiplication rule:

P (A1 ∩A2) = P (A1)P (A2|A1) =
4

52
· 3

51
≈ 0.0045

2.5 More Examples

Example 2.5.1 (One of Each Kind). A box contains 6 dark chocolates and
4 milk chocolates. Two chocolates are picked at random without replacement.
What is the chance of getting one of each kind?

The event ”one of each kind” can be partitioned into two mutually exclusive
events:
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1. First dark, then milk (DM)

2. First milk, then dark (MD)

We calculate the probability of each and add them.

P (DM) = P (1st is dark)× P (2nd is milk — 1st is dark) =
6

10
· 4
9
=

24

90

P (MD) = P (1st is milk)× P (2nd is dark — 1st is milk) =
4

10
· 6
9
=

24

90

The total probability is the sum of these two probabilities:

P (one of each) = P (DM) + P (MD) =
24

90
+

24

90
=

48

90
=

8

15

2.6 Updating Probabilities: Bayes’ Rule

Often, we start with an initial belief about an event, called a prior probability.
Then, we observe some data, and we want to update our belief to a posterior
probability based on this new information.

2.6.1 Derivation

Suppose we have a partition of the outcome space A1, A2, . . . , An. Let B be
another event. We want to find the ”backwards in time” probability P (Ai|B).
From the definition of conditional probability, we know:

P (Ai|B) =
P (Ai ∩B)

P (B)

We can rewrite the numerator using the multiplication rule: P (Ai ∩ B) =
P (Ai)P (B|Ai). The denominator P (B) can be found by partitioning B based on
theAj ’s (the law of total probability): P (B) =

∑n
j=1 P (Aj∩B) =

∑n
j=1 P (Aj)P (B|Aj).

Combining these gives Bayes’ Rule:

P (Ai|B) =
P (Ai)P (B|Ai)∑n

j=1 P (Aj)P (B|Aj)

Example 2.6.1 (Rare Disease Testing). A rare disease affects 0.4

• If a person has the disease, the test is positive 99

• If a person does not have the disease, the test is negative 99.5

A person is picked at random and tests positive. What is the probability they
actually have the disease?

Let D be the event the person has the disease, and + be the event the test
is positive. We want to find P (D|+). We are given the following probabilities:

• Prior probability of having the disease: P (D) = 0.004.
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• Prior probability of not having the disease: P (Dc) = 1− 0.004 = 0.996.

• Conditional probability of a positive test given disease (true positive rate):
P (+|D) = 0.99.

• Conditional probability of a negative test given no disease: P (−|Dc) =
0.995.

• From this, the conditional probability of a positive test given no disease
(false positive rate) is P (+|Dc) = 1− 0.995 = 0.005.

Using Bayes’ Rule, the denominator is the total probability of testing posi-
tive: P (+) = P (D)P (+|D)+P (Dc)P (+|Dc) = (0.004)(0.99)+(0.996)(0.005) =
0.00396 + 0.00498 = 0.00894.

The numerator is the probability of having the disease AND testing positive:
P (D ∩+) = P (D)P (+|D) = (0.004)(0.99) = 0.00396.

The posterior probability is:

P (D|+) =
P (D ∩+)

P (+)
=

0.00396

0.00894
≈ 0.44295

So, even with a positive test, there is only a 44.3
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Chapter 3

Random Variables

Many aspects of data science involve numerical quantities whose observed val-
ues are subject to chance. For instance, if we take a random sample of people,
the number of individuals in a certain category is a random quantity. In proba-
bility theory, these numerical functions defined on an outcome space are called
random variables. We typically denote them with uppercase letters like X
and Y .

3.1 Functions on an Outcome Space

Definition 3.1.1 (Random Variable). A random variable is a real-valued
function defined on an outcome space Ω. That is, it is a mapping X : Ω → R.
For each outcome ω ∈ Ω, the random variable X assigns a numerical value
X(ω).

Example 3.1.2 (Sum of Dice Rolls). Consider an experiment of rolling a fair
die two times. The outcome space is Ω = {(i, j) : i, j ∈ {1, 2, 3, 4, 5, 6}}. Let S
be the random variable representing the sum of the two rolls. For an outcome
ω = (i, j), the value of the random variable is S(ω) = i+ j. For example, if the
outcome is (3, 4), then S((3, 4)) = 7.

3.1.1 Events Determined by a Random Variable

For a random variable X and a set of real numbers A, the event {X ∈ A} is
the set of all outcomes ω in the outcome space such that the value X(ω) is in
A. Formally:

{X ∈ A} = {ω ∈ Ω : X(ω) ∈ A}

If we know the value of X, we can determine whether or not the event {X ∈ A}
has occurred. For simplicity, if A is a single value {k}, we write the event as
{X = k}.

19
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Example 3.1.3 (Difference of two rolls). Consider two rolls of a die. Let X1 be
the result of the first roll and X2 the result of the second. Define a new random
variable D = X1 − X2. Let’s find the outcomes corresponding to the event
{D > 3}. The outcomes (i, j) for which i − j > 3 are: (5, 1), (6, 1), and (6, 2).
Thus, the event is {D > 3} = {(5, 1), (6, 1), (6, 2)}. Assuming all 36 outcomes
are equally likely, the probability of this event is P (D > 3) = 3

36 = 1
12 .

3.2 Distributions

A random variable is fully characterized by its probability distribution.

Definition 3.2.1 (Probability Distribution). The probability distribution
(or simply distribution) of a random variable X is a specification of the set of
all possible values of X along with the probabilities of these values.

If X is a discrete random variable with possible values x1, x2, . . . , its distri-
bution can be presented in a probability distribution table:

Value k P (X = k)
x1 p1
x2 p2
...

...

The probabilities in a distribution must be non-negative and sum to 1:∑
k

P (X = k) = 1

Example 3.2.2 (Sum of two dice). Let S be the sum of two rolls of a fair
die. The possible values for S are integers from 2 to 12. We can find the
probability of each value by counting the number of outcomes that produce
that sum. For instance, to get a sum of S = 3, the outcomes are (1, 2) and
(2, 1). So, P (S = 3) = 2/36. The full distribution table for S is:

k 2 3 4 5 6 7 8 9 10 11 12
P (S = k) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

The sum of these probabilities is 1+2+3+4+5+6+5+4+3+2+1
36 = 36

36 = 1.

3.2.1 Named Distributions

Certain distributions are encountered so frequently that they are given special
names.

• Bernoulli(p): This is the distribution of a random variable that takes
value 1 with probability p and value 0 with probability 1 − p. It often
models a single ”success/failure” trial.
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• Uniform on a finite set: This distribution assigns equal probability to
all possible values in a finite set. For example, the outcome of a single fair
die roll has a uniform distribution on {1, 2, 3, 4, 5, 6}, where each value has
a probability of 1/6.

3.3 Equality of Random Variables

There are two main ways in which random variables can be considered ”equal”.

3.3.1 Equality

Definition 3.3.1 (Equal). Two random variables X and Y defined on the
same outcome space Ω are said to be equal, written X = Y , if they are equal
as functions. That is, for every outcome ω ∈ Ω, their values are the same:

X(ω) = Y (ω) for all ω ∈ Ω

Example 3.3.2. Let an experiment consist of three coin tosses. Let NH be
the number of heads and NT be the number of tails. The random variable
M = 3 − NT is equal to NH . For any outcome of three tosses, the number of
heads is always equal to 3 minus the number of tails. So, NH = 3−NT .

3.3.2 Equality in Distribution

A weaker form of equality compares only the probability distributions of the
random variables.

Definition 3.3.3 (Equal in Distribution). Two random variables X and Y

are equal in distribution, written X
d
= Y , if they have the same probability

distribution. This means they have the same set of possible values, and the
probabilities for these values are identical.

Example 3.3.4. In the three coin tosses experiment, the number of heads NH

and the number of tailsNT are not equal. For the outcome HHH,NH(HHH) = 3
while NT (HHH) = 0. However, their distributions are the same. Both can take
values {0, 1, 2, 3}, and the probabilities are:

k 0 1 2 3
P (NH = k) 1/8 3/8 3/8 1/8
P (NT = k) 1/8 3/8 3/8 1/8

Since their probability distributions are identical, NH and NT are equal in

distribution: NH
d
= NT .
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3.3.3 Relation Between the Two Equalities

Equality is a stronger condition than equality in distribution. If two random
variables are equal, they must also be equal in distribution.

X = Y =⇒ X
d
= Y

The converse is not true, as demonstrated by the NH and NT example.

3.4 Joint Distributions

To understand the relationship between two random variables, we need to look
at them together.

Definition 3.4.1 (Joint Probability Distribution). LetX and Y be two random
variables defined on the same outcome space. Their joint probability distri-
bution is a function that gives the probability of each pair of values (x, y). It
is defined as:

P (X = x, Y = y) = P ({X = x} ∩ {Y = y})

for all possible values x of X and y of Y .

The joint distribution of two discrete random variables can be displayed
in a joint distribution table. The values of X form the rows, the values
of Y form the columns (or vice-versa), and the cells contain the probabilities
P (X = x, Y = y). The probabilities in the table must be non-negative and
must sum to 1.

Example 3.4.2 (Two Draws Without Replacement). Suppose we have a box
with three tickets labeled 1, 2, and 3. We draw two tickets at random without
replacement. Let X1 be the number on the first ticket and X2 be the number on
the second. There are 3×2 = 6 equally likely outcomes: (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2).
Each has a probability of 1/6. The joint distribution of X1 and X2 is given in
the table below. Note that the diagonal entries are zero because we are drawing
without replacement.

X2

1 2 3 Total
1 0 1/6 1/6 2/6

X1 2 1/6 0 1/6 2/6
3 1/6 1/6 0 2/6

Total 2/6 2/6 2/6 1

3.5 Marginal Distributions

The joint distribution contains all the probabilistic information about the two
variables. From it, we can recover the distribution of each variable individually.
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Definition 3.5.1 (Marginal Distribution). The marginal distribution of a
random variable X is its probability distribution, viewed in isolation from other
variables. It can be calculated from a joint distribution by summing over the
values of the other variable.

P (X = x) =
∑
all y

P (X = x, Y = y)

This is often referred to as ”summing out” or ”marginalizing out” the variable
Y .

In the joint distribution table, the marginal probabilities are found in the
‘Total‘ row and column, which are also known as the margins of the table.

Example 3.5.2 (Marginals from the Two Draws Example). Using the joint
distribution table from the previous example: The marginal distribution of X1

is found by summing the probabilities across the rows:

• P (X1 = 1) = 0 + 1/6 + 1/6 = 2/6 = 1/3

• P (X1 = 2) = 1/6 + 0 + 1/6 = 2/6 = 1/3

• P (X1 = 3) = 1/6 + 1/6 + 0 = 2/6 = 1/3

So, X1 has a uniform distribution on {1, 2, 3}.
The marginal distribution of X2 is found by summing the probabilities down

the columns:

• P (X2 = 1) = 0 + 1/6 + 1/6 = 2/6 = 1/3

• P (X2 = 2) = 1/6 + 0 + 1/6 = 2/6 = 1/3

• P (X2 = 3) = 1/6 + 1/6 + 0 = 2/6 = 1/3

So, X2 also has a uniform distribution on {1, 2, 3}. This is an interesting result,
as one might think the second draw is different from the first.

3.6 Conditional Distributions

The core of understanding the relationship between variables lies in condition-
ing.

Definition 3.6.1 (Conditional Distribution). Let X and Y be two random
variables. The conditional distribution of Y given X=x is the distribu-
tion of Y under the condition that X has taken the value x. The conditional
probabilities are given by:

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)

This is defined only for values of x where P (X = x) > 0.

For a fixed value x, the function P (Y = y|X = x) over all possible y is a
valid probability distribution; its values are non-negative and sum to 1.
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Example 3.6.2 (Conditional Distribution for the Two Draws). Let’s find the
conditional distribution of X2 given X1 = 3. We use the formula with the values
from our joint distribution table. We already know the marginal probability
P (X1 = 3) = 1/3.

• P (X2 = 1|X1 = 3) = P (X1=3,X2=1)
P (X1=3) = 1/6

1/3 = 1
2

• P (X2 = 2|X1 = 3) = P (X1=3,X2=2)
P (X1=3) = 1/6

1/3 = 1
2

• P (X2 = 3|X1 = 3) = P (X1=3,X2=3)
P (X1=3) = 0

1/3 = 0

So, given that the first draw was a 3, the second draw is uniformly distributed
on the remaining tickets, {1, 2}. This matches our intuition.

3.7 Dependence and Independence

The concept of independence is central to probability and statistics.

Definition 3.7.1 (Independent Random Variables). Two random variables X
and Y are said to be independent if for every pair of values (x, y), the events
{X = x} and {Y = y} are independent. This means:

P (X = x, Y = y) = P (X = x)P (Y = y)

This condition is often called the product rule for independent ran-
dom variables. It implies that the joint distribution table of two independent
variables can be constructed by multiplying their marginal distributions.

An equivalent definition of independence can be stated using conditional
probabilities: if X and Y are independent, then for any x with P (X = x) > 0,

P (Y = y|X = x) = P (Y = y)

This means that knowing the value of X does not change the distribution of Y .
The conditional distribution of Y is the same as its marginal distribution.

In our running example of drawing tickets without replacement, X1 and
X2 are dependent. We can see this because P (X1 = 1, X2 = 1) = 0, but
P (X1 = 1)P (X2 = 1) = (1/3)(1/3) = 1/9. Since these are not equal, the
variables are dependent.

Example 3.7.2 (Independent Random Variables: Two Dice Rolls). Let a fair
die be rolled twice. LetX1 be the outcome of the first roll andX2 be the outcome
of the second. There are 36 equally likely outcomes. The marginal distribution
for both X1 and X2 is uniform on {1, 2, 3, 4, 5, 6}, so P (X1 = i) = 1/6 and
P (X2 = j) = 1/6 for any i, j in the set. The joint probability of any outcome
(i, j) is P (X1 = i,X2 = j) = 1/36. We can check the product rule:

P (X1 = i)P (X2 = j) =
1

6
· 1
6
=

1

36

Since P (X1 = i,X2 = j) = P (X1 = i)P (X2 = j) for all pairs (i, j), the random
variables X1 and X2 are independent.
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Probabilities of Multiple
Events

4.1 Bounding the Chance of a Union

Often, we are interested in the probability that at least one of a collection of
events occurs, which corresponds to the probability of their union, P (A1 ∪A2 ∪
· · · ∪ An). Calculating this exactly can be complex, but we can start with a
simple upper bound.

Theorem 4.1.1 (Boole’s Inequality). For any finite or countably infinite col-
lection of events A1, A2, . . . , the following inequality holds:

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai)

This inequality is also known as the union bound. It states that the proba-
bility of the union is no larger than the sum of the individual probabilities. The
inequality is intuitive because if there is any overlap between the events, the
sum on the right-hand side counts the probability of the intersections multiple
times.

Proof. For two events A1 and A2, we know P (A1 ∪ A2) = P (A1) + P (A2) −
P (A1 ∩ A2). Since P (A1 ∩ A2) ≥ 0, we have P (A1 ∪ A2) ≤ P (A1) + P (A2).
The proof for a general n events follows by induction. We assume the inequality
holds for n− 1 events.

P

(
n⋃

i=1

Ai

)
= P

((
n−1⋃
i=1

Ai

)
∪An

)
≤ P

(
n−1⋃
i=1

Ai

)
+ P (An)

By the induction hypothesis, P
(⋃n−1

i=1 Ai

)
≤
∑n−1

i=1 P (Ai). Substituting this in

25
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gives:

P

(
n⋃

i=1

Ai

)
≤

n−1∑
i=1

P (Ai) + P (An) =

n∑
i=1

P (Ai)

This completes the proof.

4.2 The Inclusion-Exclusion Formula

Boole’s inequality gives an upper bound. To find the exact probability of a
union, we need a formula that corrects for the over-counting. This is the
Inclusion-Exclusion formula.

4.2.1 Formula for Two and Three Events

For two events, the formula is:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

For three events, we add the individuals, subtract the pairs, and add back the
triple intersection:

P (A ∪B ∪ C) =P (A) + P (B) + P (C)

− [P (A ∩B) + P (A ∩ C) + P (B ∩ C)]

+ P (A ∩B ∩ C)

4.2.2 General Formula

For a collection of n events A1, A2, . . . , An, the general formula is:

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩Aj)

+
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak)− · · ·+ (−1)n−1P (A1 ∩ · · · ∩An)

In this formula, we sum over all single events, then subtract the sum over all
pairs, add the sum over all triples, and so on, alternating signs until we reach
the intersection of all n events.

4.3 The Matching Problem

A classic application of the Inclusion-Exclusion formula is the matching problem,
also known as the problem of derangements.

Problem: Suppose n letters, intended for n different recipients, are ran-
domly placed into n pre-addressed envelopes. What is the probability that at
least one letter is placed in the correct envelope?
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Assume all n! permutations of letters into envelopes are equally likely. Let
Ai be the event that letter i goes into envelope i. We want to compute P (A1 ∪
A2 ∪ · · · ∪An). We use the Inclusion-Exclusion formula.

Step 1: Calculate the sum of single probabilities. The probability

that a specific letter i goes into its correct envelope is P (Ai) =
(n−1)!

n! = 1
n , since

the other n − 1 letters can be arranged in (n − 1)! ways. There are
(
n
1

)
such

terms, so the first sum is
(
n
1

)
1
n = 1.

Step 2: Calculate the sum of pairwise intersection probabilities.
The probability that two specific letters, i and j, both go into their correct

envelopes is P (Ai ∩Aj) =
(n−2)!

n! . There are
(
n
2

)
such pairs. The second sum is(

n
2

) (n−2)!
n! = n(n−1)

2
(n−2)!

n! = 1
2! .

Step 3: Calculate the sum of k-wise intersection probabilities. In
general, for any k distinct indices i1, . . . , ik, the probability of the intersection
P (Ai1 ∩ · · ·∩Aik) is the chance that those k letters are in the correct envelopes.

This is (n−k)!
n! . There are

(
n
k

)
such intersections of size k. The k-th term in the

Inclusion-Exclusion formula is:(
n

k

)
P (A1 ∩ · · · ∩Ak) =

(
n

k

)
(n− k)!

n!
=

n!

k!(n− k)!

(n− k)!

n!
=

1

k!

Step 4: Combine the terms. The probability of at least one match is:

P (at least one match) =

n∑
k=1

(−1)k−1 1

k!
= 1− 1

2!
+

1

3!
− · · ·+ (−1)n−1 1

n!

The probability of no matches is P (no match) = 1−P (at least one match).

P (no match) = 1−
(
1− 1

2!
+

1

3!
− · · ·+ (−1)n−1 1

n!

)
=

n∑
k=0

(−1)k

k!

As n → ∞, this sum converges to the Taylor series expansion of e−1. So, for
large n, the probability of no matches is approximately 1/e ≈ 0.3679.

4.4 Application to Sampling Without Replace-
ment

Let’s use the inclusion-exclusion principle to find the probability of getting at
least one ”good” element in a sample drawn without replacement.

Problem: A population of N items contains G good items and B bad items
(N = G+B). We draw a simple random sample of size n without replacement.
What is the probability that the sample contains at least one good item?

Let Ai be the event that the i-th good item (for i = 1, . . . , G) is in the
sample. We want to find P (A1 ∪A2 ∪ · · · ∪AG).

Step 1: Calculate intersection probabilities. Let’s find the probability
of the intersection of k of these events, say P (A1 ∩ · · · ∩ Ak). This is the
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probability that k specific good items are all in our sample of size n. We can
count the number of samples. The total number of samples of size n is

(
N
n

)
.

To form a sample containing these k specific good items, we must choose them,
and then choose the remaining n−k members of the sample from the remaining
N − k items in the population. The number of ways to do this is

(
N−k
n−k

)
. So,

the probability is:

P (A1 ∩ · · · ∩Ak) =

(
N−k
n−k

)(
N
n

)
This probability is the same for any set of k specific good items.

Step 2: Apply the Inclusion-Exclusion Formula. The sum of all k-

wise intersections is
(
G
k

)
P (A1 ∩ · · · ∩Ak) =

(
G
k

) (N−k
n−k)
(Nn)

. The Inclusion-Exclusion

formula gives:

P (at least one good item) =

G∑
k=1

(−1)k−1

(
G

k

)(N−k
n−k

)(
N
n

)
Alternative Method (Complement Rule) This problem is much more

easily solved using the complement rule. The complement event is ”no good
items are in the sample,” which means all n items must be drawn from the B

bad items. The number of ways to do this is
(
B
n

)
. So, P (no good items) =

(Bn)
(Nn)

.

And the desired probability is:

P (at least one good item) = 1−
(
B
n

)(
N
n

)
Since B = N−G, this is 1− (N−G

n )
(Nn)

. The fact that this simple expression is equal

to the complicated sum from the Inclusion-Exclusion formula is a known com-
binatorial identity. This example highlights that while the Inclusion-Exclusion
formula is always valid, a more direct method is often preferable if available.
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Discrete Variables

5.1 The Binomial Distribution

One of the simplest and most common types of random variables is a count of
successes in a sequence of trials. This leads to the binomial distribution.

Definition 5.1.1 (Binomial Distribution). A random variable X has the bino-
mial distribution with parameters n and p, written X ∼ Binomial(n, p), if it
represents the number of successes in n independent trials, where the probability
of success in each trial is p.

The assumptions for a binomial model are:

• A fixed number of trials, n.

• The trials are independent of each other.

• Each trial has only two possible outcomes, ”success” and ”failure”.

• The probability of success, p, is the same for all trials.

The probability mass function of a binomial random variable is given by the
Binomial Formula:

P (X = k) =

(
n

k

)
pk(1− p)n−k, for k = 0, 1, . . . , n

•
(
n
k

)
is the binomial coefficient, representing the number of ways to choose

k positions for the successes out of n trials.

• pk is the probability of getting k successes.

• (1− p)n−k is the probability of getting n− k failures.

Example 5.1.2 (Flipping a Biased Coin). A coin is biased with P (Heads) =
0.7. It is tossed 10 times. What is the probability of getting exactly 6 heads?

29
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This is a binomial setting with n = 10 trials and success probability p = 0.7.
Let X be the number of heads. We want to find P (X = 6).

P (X = 6) =

(
10

6

)
(0.7)6(0.3)10−6 = 210 · (0.7)6(0.3)4

P (X = 6) = 210 · (0.117649) · (0.0081) ≈ 0.2001

5.2 The Multinomial Distribution

The multinomial distribution generalizes the binomial distribution to the case
where each trial can have more than two possible outcomes.

Definition 5.2.1 (Multinomial Distribution). Suppose we have n independent
trials. Each trial can result in one ofm categories. For each trial, the probability
of resulting in category i is pi, where

∑m
i=1 pi = 1. Let Ni be the random count

of outcomes in category i after n trials. The vector of counts (N1, N2, . . . , Nm)
has a multinomial distribution.

The joint probability mass function for the counts being n1, n2, . . . , nm (where∑
ni = n) is:

P (N1 = n1, . . . , Nm = nm) =
n!

n1!n2! . . . nm!
pn1
1 pn2

2 . . . pnm
m

• The term n!
n1!...nm! is the multinomial coefficient, which counts the number

of ways to arrange the n outcomes into the specified groups.

• The term pn1
1 . . . pnm

m is the probability of any specific sequence with that
number of outcomes in each category.

5.3 The Hypergeometric Distribution Revisited

The hypergeometric distribution describes the number of ”good” elements in a
simple random sample drawn without replacement. Let a population have N
items, G of which are ”good” and B = N−G are ”bad”. If we draw a sample of
size n, the number of good items in the sample, X, follows the hypergeometric
distribution:

P (X = k) =

(
G
k

)(
B

n−k

)(
N
n

)
5.3.1 Binomial Approximation to the Hypergeometric

If the population size N is very large compared to the sample size n, then
drawing without replacement is ”almost” like drawing with replacement. In this
case, the hypergeometric distribution can be well-approximated by the binomial
distribution. The argument is that the probability of success on each draw does
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not change much. The probability of the first draw being good is p = G/N . The
probability of the second being good, given the first was good, is (G−1)/(N−1),
which is very close to p if G and N are large. So, for large N and small n/N ,
we have:

Hypergeometric(N,G, n) ≈ Binomial(n, p = G/N)

5.4 Odds and Odds Ratios

Probabilities can be expressed in terms of odds, which is common in some fields
like gaming and epidemiology.

Definition 5.4.1 (Odds). The odds of an event A are defined as the ratio of
the probability of the event to the probability of its complement:

o(A) =
P (A)

P (Ac)
=

P (A)

1− P (A)

We can convert back from odds to probability using the formula: P (A) =
o(A)

1+o(A) .

5.4.1 Bayes’ Rule in Odds Form

A particularly elegant form of Bayes’ Rule uses odds. Let A be an event and B
be some data or evidence.

Posterior Odds of A =
P (A|B)

P (Ac|B)
=

P (A)P (B|A)

P (Ac)P (B|Ac)
=

P (A)

P (Ac)
· P (B|A)

P (B|Ac)

This gives the rule:

Posterior Odds = Prior Odds× Likelihood Ratio

The likelihood ratio P (B|A)
P (B|Ac) measures how much the data B supports event A

over its complement.

5.5 The Law of Small Numbers: Poisson Ap-
proximation

When the number of trials n is large and the probability of success p is small, the
binomial distribution can be approximated by the Poisson distribution. This is
often called the ”law of small numbers”.

Definition 5.5.1 (Poisson Distribution). A random variable X has the Pois-
son distribution with parameter µ > 0, written X ∼ Poisson(µ), if its proba-
bility mass function is:

P (X = k) = e−µµ
k

k!
, for k = 0, 1, 2, . . .
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5.5.1 Derivation from the Binomial

Consider a binomial distribution where n → ∞ and p → 0 in such a way that
the product µ = np remains constant.

P (X = k) =

(
n

k

)
pk(1− p)n−k =

n(n− 1) . . . (n− k + 1)

k!

(µ
n

)k (
1− µ

n

)n−k

We rearrange the terms:

=
1

k!

n(n− 1) . . . (n− k + 1)

nk
µk
(
1− µ

n

)n (
1− µ

n

)−k

Now we take the limit as n → ∞:

• The term n(n−1)...(n−k+1)
nk = n

n
n−1
n . . . n−k+1

n → 1 · 1 . . . 1 = 1.

• The term µk is constant with respect to n.

• The term
(
1− µ

n

)n → e−µ.

• The term
(
1− µ

n

)−k → (1− 0)−k = 1.

Putting it all together, we get the Poisson formula:

P (X = k) → 1

k!
· 1 · µk · e−µ · 1 = e−µµ

k

k!

This approximation is generally good when n is large (e.g., n > 50) and p is
small (e.g., p < 0.05).

5.6 The Poisson Distribution

First, let’s review the Poisson distribution and its key properties.

Definition 5.6.1 (Poisson Distribution). A random variable X has the Pois-
son distribution with parameter µ > 0, written X ∼ Poisson(µ), if its proba-
bility mass function is given by:

P (X = k) = e−µµ
k

k!
, for k = 0, 1, 2, . . .

The parameter µ represents the expected number of events and is also approx-
imately the mode of the distribution. The sum of the probabilities is 1, which
follows from the Taylor series expansion of eµ:

∞∑
k=0

P (X = k) =

∞∑
k=0

e−µµ
k

k!
= e−µ

∞∑
k=0

µk

k!
= e−µeµ = 1

Theorem 5.6.2 (Sum of Independent Poissons). If X ∼ Poisson(µ) and Y ∼
Poisson(λ) are independent random variables, then their sum S = X + Y also
follows a Poisson distribution with parameter µ+ λ.
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Proof. The possible values of S are non-negative integers. For any integer s ≥ 0,
we find P (S = s) by conditioning on the value of X. Since X and Y are non-
negative, X can take any integer value from 0 to s.

P (S = s) =

s∑
k=0

P (X = k, Y = s− k)

=

s∑
k=0

P (X = k)P (Y = s− k) (by independence)

=

s∑
k=0

(
e−µµ

k

k!

)(
e−λ λs−k

(s− k)!

)

= e−(µ+λ)
s∑

k=0

µkλs−k

k!(s− k)!

=
e−(µ+λ)

s!

s∑
k=0

s!

k!(s− k)!
µkλs−k

=
e−(µ+λ)

s!
(µ+ λ)s (by the Binomial Theorem)

This is the probability mass function of a Poisson(µ+ λ) distribution.

5.7 Poissonizing the Binomial

The core idea of Poissonization is to take a fixed number of trials and make it
random.

The Model:

1. Let N be a random variable with a Poisson(µ) distribution.

2. Let the conditional distribution of a random variable S given N = n be
Binomial(n, p).

This models a situation with a random number of trials, where each trial is an
independent success with probability p.

Theorem 5.7.1. In the model described above, the number of successes S and
the number of failures F = N − S have the following properties:

1. S has a Poisson(µp) distribution.

2. F has a Poisson(µ(1− p)) distribution.

3. S and F are independent.

Proof. 1. Distribution of S: The possible values of S are 0, 1, 2, . . . . For an
integer s ≥ 0, we find P (S = s) by conditioning on N . The sum must start
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from n = s since we need at least s trials to have s successes.

P (S = s) =

∞∑
n=s

P (N = n, S = s) =

∞∑
n=s

P (N = n)P (S = s|N = n)

=

∞∑
n=s

(
e−µµ

n

n!

)((
n

s

)
ps(1− p)n−s

)

=

∞∑
n=s

e−µµ
n

n!

n!

s!(n− s)!
ps(1− p)n−s

=
e−µps

s!

∞∑
n=s

µn(1− p)n−s

(n− s)!

=
e−µ(µp)s

s!

∞∑
n=s

(µ(1− p))n−s

(n− s)!

Let j = n− s. The sum becomes
∑∞

j=0
(µ(1−p))j

j! = eµ(1−p).

P (S = s) =
e−µ(µp)s

s!
eµ(1−p) = e−µp (µp)

s

s!

This is the PMF of a Poisson(µp) distribution.
2. Distribution of F: This follows by symmetry. If we call ”failures”

our new successes, their probability is 1 − p. The number of failures F is thus
Poisson with parameter µ(1− p).

3. Independence of S and F: We compute the joint probability P (S =
s, F = f). This event is equivalent to having s successes and f failures, which
means the total number of trials must have been N = s+ f .

P (S = s, F = f) = P (N = s+ f, S = s)

= P (N = s+ f)P (S = s|N = s+ f)

=

(
e−µ µs+f

(s+ f)!

)((
s+ f

s

)
ps(1− p)f

)
= e−µ µs+f

(s+ f)!

(s+ f)!

s!f !
ps(1− p)f

= e−µ (µp)
s(µ(1− p))f

s!f !

=

(
e−µp (µp)

s

s!

)(
e−µ(1−p) (µ(1− p))f

f !

)
= P (S = s)P (F = f)

Since the joint distribution is the product of the marginals, S and F are inde-
pendent. This is a remarkable result: randomizing the number of trials with
a Poisson distribution breaks the strong dependence between the number of
successes and failures.
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5.8 Poissonizing the Multinomial

The results from the binomial case extend naturally to the multinomial case,
where each trial can result in one of m > 2 categories.

The Model:

1. Let the total number of trials N be a Poisson(µ) random variable.

2. Conditional onN = n, the vector of counts in each category (X1, X2, . . . , Xm)
has a Multinomial(n, p1, p2, . . . , pm) distribution, where

∑
pi = 1.

Theorem 5.8.1. In the multinomial model with a Poisson number of trials,
the counts in each category, X1, X2, . . . , Xm, are mutually independent random
variables, and each Xi follows a Poisson distribution with parameter µpi.

Proof. The proof is a direct extension of the binomial case. We find the joint
PMF for a set of counts n1, n2, . . . , nm. Let n =

∑m
i=1 ni. This event requires

that the total number of trials was N = n.

P (X1 = n1, . . . , Xm = nm) = P (N = n)P (X1 = n1, . . . |N = n)

=

(
e−µµ

n

n!

)(
n!

n1!n2! . . . nm!
pn1
1 pn2

2 . . . pnm
m

)
= e−µ (µp1)

n1(µp2)
n2 . . . (µpm)nm

n1!n2! . . . nm!

=

(
e−µp1

(µp1)
n1

n1!

)
. . .

(
e−µpm

(µpm)nm

nm!

)
=

m∏
i=1

P (Xi = ni) where Xi ∼ Poisson(µpi)

The joint PMF factors into the product of individual Poisson PMFs, proving
both the distributional form and the independence of the counts.

Example 5.8.2 (Dice Rolling). Suppose a fair die is rolled N times, where
N ∼ Poisson(18). Let Xi be the number of times face i appears, for i = 1, . . . , 6.
Here, pi = 1/6 for all i. According to the theorem, the counts X1, . . . , X6 are
independent, and each Xi is Poisson with parameter µpi = 18 × (1/6) = 3.
What is the probability that each face appears at most twice? Because of
independence, we can calculate this by finding the probability for one face and
raising it to the power of 6.

P (X1 ≤ 2) = P (X1 = 0) + P (X1 = 1) + P (X1 = 2) = e−3 3
0

0!
+ e−3 3

1

1!
+ e−3 3

2

2!

P (All Xi ≤ 2) = [P (X1 ≤ 2)]6 =

(
2∑

k=0

e−3 3
k

k!

)6

This calculation would be extremely difficult without Poissonization due to the
complex dependencies in the multinomial distribution.
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Chapter 6

Expectation

6.1 Definition of Expectation

Definition 6.1.1 (Expectation). Let X be a random variable with a discrete
set of possible values. The expected value of X, denoted E(X), is defined as
the sum of each possible value multiplied by its probability:

E(X) =
∑
x

x · P (X = x)

The sum is taken over all possible values x that the random variable X can
assume. For the expectation to be well-defined, this sum must be absolutely
convergent, i.e.,

∑
x |x|P (X = x) < ∞. For any random variable with a finite

number of possible values, the expectation is always well-defined.

Example 6.1.2 (Bernoulli Trial). LetX be a random variable with a Bernoulli(p)
distribution. X takes the value 1 with probability p and 0 with probability 1−p.
The expectation is:

E(X) = 1 · P (X = 1) + 0 · P (X = 0) = 1 · p+ 0 · (1− p) = p

Example 6.1.3 (Uniform on Integers). Let X have a uniform distribution on
the integers {1, 2, . . . , n}. For each integer k in this range, P (X = k) = 1/n.
The expectation is:

E(X) =

n∑
k=1

k · P (X = k) =

n∑
k=1

k · 1
n
=

1

n

n∑
k=1

k

Using the formula for the sum of the first n integers,
∑n

k=1 k = n(n+1)
2 , we get:

E(X) =
1

n
· n(n+ 1)

2
=

n+ 1

2

This result makes intuitive sense; the center of the distribution is the midpoint
of the range.

37
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6.2 Expectation of a Function of a Random Vari-
able

We often need to find the expectation of a function of a random variable, say
g(X). One way would be to find the distribution of the new random variable
Y = g(X) and then apply the definition. However, a more direct method is
available.

Theorem 6.2.1 (Law of the Unconscious Statistician - LOTUS). Let X be a
discrete random variable and g be a real-valued function. The expectation of the
random variable g(X) can be calculated directly without finding its distribution,
using the following formula:

E(g(X)) =
∑
x

g(x)P (X = x)

The sum is over all possible values x of the original random variable X.

Example 6.2.2 (E(X2) for a single die roll). Let X be the result of a single
roll of a fair six-sided die. We know P (X = k) = 1/6 for k = 1, . . . , 6. Let’s
find E(X2) using LOTUS with g(x) = x2.

E(X2) =

6∑
k=1

k2 · P (X = k) =

6∑
k=1

k2 · 1
6

E(X2) =
1

6
(12+22+32+42+52+62) =

1

6
(1+4+9+16+25+36) =

91

6
≈ 15.17

6.3 Linearity of Expectation

Expectation has a powerful linear property that is fundamental to many calcu-
lations in probability.

Theorem 6.3.1 (Additivity of Expectation). For any two random variables X
and Y defined on the same outcome space, the expectation of their sum is the
sum of their expectations:

E(X + Y ) = E(X) + E(Y )

This property holds regardless of whether the variables are independent or de-
pendent.

Proof. Let S = X + Y . Using LOTUS for a function of two variables:

E(S) = E(X + Y ) =
∑
ω∈Ω

(X(ω) + Y (ω))P (ω)

=
∑
ω∈Ω

X(ω)P (ω) +
∑
ω∈Ω

Y (ω)P (ω)

= E(X) + E(Y )
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By induction, this extends to the sum of any finite number of random variables:
E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn).

Proposition 6.3.2 (Linearity of Expectation). For any random variable X and
any constants a, b:

E(aX + b) = aE(X) + b

6.4 The Method of Indicators

The method of indicators is a particularly elegant application of the linearity of
expectation. It simplifies the calculation of the expectation of complex random
variables by breaking them down into a sum of simple indicator variables.

Definition 6.4.1 (Indicator Random Variable). An indicator random vari-
able IA for an event A is a random variable that takes the value 1 if event A
occurs, and 0 otherwise.

IA =

{
1 if A occurs

0 if A does not occur

The expectation of an indicator variable is simply the probability of the
event it indicates.

E(IA) = 1 · P (A) + 0 · P (Ac) = P (A)

Example 6.4.2 (Expectation of a Binomial Random Variable). Let X ∼
Binomial(n, p). We can calculate E(X) using the definition, but it involves
a cumbersome sum. Instead, we can represent X as a sum of indicators. Let Ij
be the indicator of success on the j-th trial, for j = 1, . . . , n. Since each trial is
a success with probability p, we have E(Ij) = p for all j. The total number of
successes is X = I1 + I2 + · · ·+ In. Using the additivity of expectation:

E(X) = E(I1 + I2 + · · ·+ In) = E(I1) + E(I2) + · · ·+ E(In)

E(X) = p+ p+ · · ·+ p︸ ︷︷ ︸
n times

= np

This derivation is remarkably simple and does not even require the trials to be
independent, only that the probability of success on each trial is p.

Example 6.4.3 (Expectation of a Hypergeometric Random Variable). A pop-
ulation has N items, G of which are good. A simple random sample of size n is
drawn without replacement. Let X be the number of good items in the sample.
X has a hypergeometric distribution. Calculating E(X) with the hypergeomet-
ric PMF is very difficult. Instead, we use indicators. Let Ij be the indicator that
the j-th draw in the sample is a good item, for j = 1, . . . , n. The total number
of good items is X = I1 + I2 + · · · + In. By additivity, E(X) =

∑n
j=1 E(Ij).

We need to find E(Ij) = P (draw j is good). By symmetry in simple random
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sampling, any draw is equally likely to be any of the N items in the population.
Therefore, the probability that any specific draw is good is the same as the
probability for the first draw:

P (draw j is good) =
G

N

Thus, E(Ij) = G/N for every j = 1, . . . , n.

E(X) =

n∑
j=1

G

N
= n

G

N

This result is obtained with great ease compared to the combinatorial sums
required by the definition. It highlights the power of linearity of expectation
and the indicator method.

6.5 Expectation by Conditioning

We can find the expectation of a random variable T by conditioning on another
random variable S.

Definition 6.5.1 (Conditional Expectation). For two random variables S and
T , the conditional expectation of T given S=s, denoted E(T |S = s), is the
expected value of the conditional distribution of T given S = s. The function
that maps each value s to E(T |S = s) defines a new random variable called the
conditional expectation of T given S, denoted E(T |S).

Theorem 6.5.2 (Law of Iterated Expectations). For any two random variables
S and T , the expectation of T is the expectation of the conditional expectation
of T given S.

E(T ) = E(E(T |S))

Proof. The proof proceeds by expanding the definitions:

E(T ) =
∑
t

tP (T = t) =
∑
t

t
∑
s

P (S = s, T = t)

=
∑
t

t
∑
s

P (S = s)P (T = t|S = s)

=
∑
s

P (S = s)

(∑
t

tP (T = t|S = s)

)
=
∑
s

P (S = s)E(T |S = s)

= E(E(T |S))
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Example 6.5.3 (Random Sums). Let X1, X2, . . . be i.i.d. random variables
with mean µX . Let N be a non-negative integer-valued random variable, inde-
pendent of the Xi, with mean µN . Let S =

∑N
i=1 Xi (with S = 0 if N = 0).

Find E(S).
We condition on N . Given N = n, S is the sum of n i.i.d. variables.

E(S|N = n) = E(

n∑
i=1

Xi) =

n∑
i=1

E(Xi) = nµX

This defines the random variable E(S|N) = NµX . Now we use iterated expec-
tations:

E(S) = E(E(S|N)) = E(NµX) = µXE(N) = µNµX

The expected value of a random sum is the expected number of terms times the
expected value of each term.

6.6 Expected Waiting Times

A common application of conditional expectation is to find the expected time
until some event occurs. The strategy is to condition on the first step(s) of the
process.

Example 6.6.1 (Waiting for a Success). Let WH be the number of tosses of a
coin required to get the first head. The probability of heads is p. Find E(WH).

Let x = E(WH). We always make at least one toss. After the first toss:

• It is a head (probability p). The process stops. The total number of tosses
is 1.

• It is a tail (probability q = 1− p). The process must start over. The addi-
tional number of tosses needed is again a random variable with expectation
x. So the total number of tosses is 1 +W ∗

H , where W ∗
H is an independent

copy of WH .

By conditioning on the first toss:

x = E(WH) = p · (1) + q · E(1 +W ∗
H) = p+ q(1 + x)

Since p+ q = 1, this becomes x = 1 + qx. Solving for x:

x(1− q) = 1 =⇒ xp = 1 =⇒ x =
1

p

This confirms the known result for the geometric distribution.

Example 6.6.2 (Waiting for HH). In tosses of a p-coin, letWHH be the waiting
time until two consecutive heads (HH) appear. Find E(WHH).

Let x = E(WHH). We condition on the first toss.

• First toss is T (prob q): We’ve wasted one toss and are back to the start.
The expected total time is 1 + x.
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• First toss is H (prob p): Now we condition on the second toss.

– Second toss is T (prob q): We have sequence HT. We’ve wasted two
tosses and are back to the start. Expected total time is 2 + x.

– Second toss is H (prob p): We have sequence HH. The process stops.
Total time is 2.

Putting this together in an equation for x:

x = q(1 + x) + p[q(2 + x) + p(2)]

x = q + qx+ 2pq + pqx+ 2p2

x(1−q−pq) = q+2pq+2p2 = q(1+2p)+2p2 = (1−p)(1+2p)+2p2 = 1+p−2p2+2p2 = 1+p

x(p− pq) = 1 + p =⇒ x(p(1− q)) = 1 + p =⇒ xp2 = 1 + p =⇒ x =
1 + p

p2

The expected waiting time can be written as 1
p2 + 1

p .
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Standard Deviation,
Variance and Covariance

7.1 Variance and Standard Deviation

Definition 7.1.1 (Variance and Standard Deviation). Let X be a random
variable with expectation E(X) = µ.

• The variance of X, denoted Var(X), is the expected squared deviation
from the mean:

Var(X) = E((X − µ)2)

• The standard deviation of X, denoted SD(X) or σX , is the square root
of the variance:

SD(X) =
√
Var(X) =

√
E((X − µ)2)

The standard deviation is in the same units as X, which makes it more inter-
pretable than the variance. It represents a typical distance between the values
of X and the mean µ.

7.1.1 Computational Formula for Variance

Calculating variance directly from the definition can be tedious. A more conve-
nient formula is often used.

Theorem 7.1.2 (Computational Formula). The variance of a random variable
X can be calculated as the expectation of the square of X minus the square of
the expectation of X.

Var(X) = E(X2)− (E(X))2

43
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Proof. Let E(X) = µ.

Var(X) = E((X − µ)2)

= E(X2 − 2µX + µ2)

= E(X2)− E(2µX) + E(µ2) (by linearity of expectation)

= E(X2)− 2µE(X) + µ2 (since µ is a constant)

= E(X2)− 2µ(µ) + µ2

= E(X2)− 2µ2 + µ2

= E(X2)− µ2 = E(X2)− (E(X))2

This completes the proof.

7.1.2 Properties of SD

1. Shifting: For any constant c, SD(X + c) = SD(X). Adding a constant
shifts the distribution but does not change its spread.

2. Scaling: For any constant a, SD(aX) = |a|SD(X). Scaling the variable
by a factor a scales the spread by |a|.

Example 7.1.3 (SD of a single die roll). Let X be the result of rolling a fair
six-sided die. We found earlier that E(X) = 3.5. To find the variance, we first
need E(X2).

E(X2) =

6∑
k=1

k2P (X = k) =
1

6
(12 + 22 + 32 + 42 + 52 + 62) =

91

6

Now we use the computational formula for variance:

Var(X) = E(X2)− (E(X))2 =
91

6
− (3.5)2 =

91

6
− (7/2)2 =

91

6
− 49

4

Var(X) =
182− 147

12
=

35

12
≈ 2.917

The standard deviation is:

SD(X) =

√
35

12
≈ 1.708

7.2 Prediction and Estimation

A key problem in data science is to predict the value of a random variable Y
based on another random variable X. We can start by considering the simplest
case: predicting Y with no information from other variables.
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7.2.1 Mean Squared Error

Suppose we want to predict a random variable Y using a single constant value
c. What is the best choice for c? A common way to measure the quality of a
prediction is to use the mean squared error (MSE).

Definition 7.2.1 (Mean Squared Error). The mean squared error of predicting
a random variable Y with a constant c is defined as:

MSE(c) = E((Y − c)2)

The goal is to find the value of c that minimizes this MSE. The predictor c that
achieves this minimum is called the best constant predictor.

Theorem 7.2.2. The best constant predictor for a random variable Y is its
expectation, c = E(Y ).

Proof. Let µY = E(Y ). We can expand the MSE expression:

E((Y − c)2) = E(((Y − µY ) + (µY − c))2)

= E((Y − µY )
2 + 2(Y − µY )(µY − c) + (µY − c)2)

= E((Y − µY )
2) + 2(µY − c)E(Y − µY ) + (µY − c)2

The middle term is zero because E(Y − µY ) = E(Y )− E(µY ) = µY − µY = 0.
So we have:

MSE(c) = E((Y − µY )
2) + (µY − c)2

The first term, E((Y − µY )
2), is just the variance Var(Y ), which does not

depend on our choice of c. The second term, (µY − c)2, is a squared quantity
and is always non-negative. To minimize the sum, we must make the second
term as small as possible. This is achieved when (µY − c)2 = 0, which implies
c = µY .

7.2.2 Root Mean Squared Error (RMSE)

When we use the best predictor c = E(Y ), the minimum possible MSE is:

min
c

MSE(c) = E((Y − E(Y ))2) = Var(Y )

The square root of this minimum error is called the root mean squared error
(RMSE).

RMSE =
√
min
c

MSE(c) =
√
Var(Y ) = SD(Y )

This gives a powerful interpretation of the standard deviation:

The standard deviation of a random variable Y is the root mean squared error
of predicting Y using the best constant predictor, E(Y).

The SD measures the inherent uncertainty or prediction error we have about a
variable when we only know its distribution.
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7.3 Covariance

Definition 7.3.1 (Covariance). Let X and Y be two random variables with ex-
pectations E(X) = µX and E(Y ) = µY . Their covariance, denoted Cov(X,Y ),
is the expected product of their deviations from their respective means:

Cov(X,Y ) = E((X − µX)(Y − µY ))

A positive covariance indicates that the variables tend to move in the same
direction (if one is above its mean, the other is likely to be as well). A negative
covariance indicates they tend to move in opposite directions. A covariance of
zero suggests no linear association.

Theorem 7.3.2 (Computational Formula for Covariance). A more practical
formula for computing covariance is:

Cov(X,Y ) = E(XY )− E(X)E(Y )

Proof. Let µX = E(X) and µY = E(Y ).

Cov(X,Y ) = E((X − µX)(Y − µY ))

= E(XY − µXY − µY X + µXµY )

= E(XY )− E(µXY )− E(µY X) + E(µXµY ) (by linearity)

= E(XY )− µXE(Y )− µY E(X) + µXµY

= E(XY )− µXµY − µY µX + µXµY

= E(XY )− µXµY = E(XY )− E(X)E(Y )

This completes the proof.

7.4 Properties of Covariance

7.4.1 Variance of a Sum

The primary motivation for introducing covariance is to find the variance of a
sum of random variables.

Theorem 7.4.1 (Variance of a Sum). For any two random variables X and Y :

Var(X + Y ) = Var(X) +Var(Y ) + 2Cov(X,Y )

Proof. Let µX = E(X), µY = E(Y ), and µX+Y = E(X + Y ) = µX + µY .

Var(X + Y ) = E((X + Y − µX+Y )
2)

= E(((X − µX) + (Y − µY ))
2)

= E((X − µX)2 + (Y − µY )
2 + 2(X − µX)(Y − µY ))

= E((X − µX)2) + E((Y − µY )
2) + 2E((X − µX)(Y − µY ))

= Var(X) + Var(Y ) + 2Cov(X,Y )

This result shows that the covariance term is the crucial correction factor.
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7.4.2 Other Properties

• Symmetry: Cov(X,Y ) = Cov(Y,X).

• Covariance with a Constant: For any constant c, Cov(X, c) = 0.

• Bilinearity: For constants a, b, c, d: Cov(aX + b, cY + d) = acCov(X,Y ).

• Covariance with Self: Cov(X,X) = E(X2)− (E(X))2 = Var(X).

7.5 Sums of Independent Variables

If two variables are independent, their covariance is zero.

Theorem 7.5.1. If X and Y are independent random variables, then Cov(X,Y ) =
0.

Proof. If X and Y are independent, then E(XY ) = E(X)E(Y ). Using the
computational formula for covariance:

Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(X)E(Y )− E(X)E(Y ) = 0

Remark. The converse is not true. A covariance of 0 does not imply indepen-
dence.

Corollary 7.5.2 (Variance of a Sum of Independent Variables). If X and Y
are independent, then:

Var(X + Y ) = Var(X) +Var(Y )

By induction, for a set of mutually independent random variables X1, . . . , Xn,
Var(

∑
Xi) =

∑
Var(Xi).

Example 7.5.3 (Variance of the Binomial Distribution). LetX ∼ Binomial(n, p).
We can write X as a sum of n independent indicator variables, X = I1+· · ·+In,
where each Ij is a Bernoulli(p) trial. We know E(Ij) = p and E(I2j ) = p. So,

Var(Ij) = E(I2j )−(E(Ij))
2 = p−p2 = p(1−p). Since the trials are independent,

the indicators are independent. Therefore:

Var(X) = Var

 n∑
j=1

Ij

 =

n∑
j=1

Var(Ij) =

n∑
j=1

p(1− p) = np(1− p)

7.6 Symmetry and Indicators for Dependent Sums

When variables are dependent, we must compute the covariance terms. A pow-
erful technique involves using indicators and exploiting symmetry.
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Example 7.6.1 (Variance of the Hypergeometric Distribution). A population
has N items, G of which are good. A simple random sample of size n is drawn
without replacement. Let X be the number of good items in the sample. We
write X as a sum of indicators, X = I1+ · · ·+ In, where Ij is the indicator that
draw j is good. These indicators are dependent because the outcome of one
draw affects the others. The variance of the sum is:

Var(X) = Var

 n∑
j=1

Ij

 =

n∑
j=1

Var(Ij) +
∑
i̸=j

Cov(Ii, Ij)

By symmetry, the distribution of each Ij is the same, and the joint distribution
of any pair (Ii, Ij) is the same for i ̸= j. Let p = G/N .

1. Variance of an indicator: P (Ij = 1) = G/N = p. So, Var(Ij) =
p(1− p) = G

N (1− G
N ). There are n such terms.

2. Covariance of two indicators: For i ̸= j, we need Cov(Ii, Ij) = E(IiIj)−
E(Ii)E(Ij). E(IiIj) = P (Ii = 1, Ij = 1) = P (I1 = 1, I2 = 1).

P (I1 = 1, I2 = 1) = P (I1 = 1)P (I2 = 1|I1 = 1) =
G

N
· G− 1

N − 1

Cov(Ii, Ij) =
G

N

G− 1

N − 1
−
(
G

N

)2

=
G

N

(
G− 1

N − 1
− G

N

)
= − G(N −G)

N2(N − 1)

The covariance is negative, which makes sense: if one draw is good, it
slightly reduces the chance for another draw to be good. There are n(n−1)
such pairs.

Combining these results:

Var(X) = n · G
N

(
1− G

N

)
+ n(n− 1) ·

(
− G(N −G)

N2(N − 1)

)
= n

G(N −G)

N2
− n(n− 1)

G(N −G)

N2(N − 1)

= n
G(N −G)

N2

(
1− n− 1

N − 1

)
= n

G

N

(
1− G

N

)(
N − 1− (n− 1)

N − 1

)
= n

G

N

(
1− G

N

)(
N − n

N − 1

)

7.7 The Finite Population Correction

The variance of the hypergeometric distribution we just derived is closely re-
lated to the variance of the corresponding binomial distribution. Let’s compare
sampling with replacement (Binomial) and without replacement (Hypergeomet-
ric).

• Varwith replacement = np(1− p) = nG
N (1− G

N )
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• Varwithout replacement = nG
N (1− G

N )
(

N−n
N−1

)
The factor N−n

N−1 is called the finite population correction (fpc).

• The fpc is always less than 1, so sampling without replacement reduces
the variance compared to sampling with replacement. This is because we
cannot draw the same item twice, which removes some variability.

• If the population size N is very large compared to the sample size n, then
the fpc is close to 1. In this case, there is little difference between the two
sampling schemes, and the hypergeometric variance is well-approximated
by the simpler binomial variance.



50CHAPTER 7. STANDARDDEVIATION, VARIANCE AND COVARIANCE



Chapter 8

The Central Limit Theorem

The Central Limit Theorem (CLT) is one of the most fundamental results
in probability theory and statistics. It states that, under certain conditions, the
probability distribution of the sum (or average) of a large number of indepen-
dent random variables will be close to a normal distribution, regardless of the
underlying distribution of the individual variables. This remarkable theorem
explains the ubiquity of the bell-shaped normal curve in the natural and social
sciences and provides the foundation for many statistical inference methods.

8.1 The Exact Distribution of a Sum

Before we approximate the distribution of a sum, let’s look at a method for find-
ing its exact distribution. This is feasible when the variables are non-negative
integers.

Definition 8.1.1 (Probability Generating Function). Let X be a random vari-
able that takes non-negative integer values. Its probability generating func-
tion (PGF) is a function GX(s) defined as:

GX(s) = E(sX) =

∞∑
k=0

skP (X = k)

The PGF is a polynomial (or power series) in the dummy variable s, where the
coefficient of sk is the probability P (X = k).

Theorem 8.1.2 (PGF of a Sum). Let X and Y be independent, non-negative
integer-valued random variables. The PGF of their sum S = X + Y is the
product of their individual PGFs:

GS(s) = GX(s)GY (s)

Proof. By independence, E(sX+Y ) = E(sXsY ) = E(sX)E(sY ).

51
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Remark. For a sum of n i.i.d. variables Sn = X1 + · · · + Xn, the PGF is
GSn(s) = (GX(s))n. One can find the distribution of Sn by expanding this
polynomial and collecting the coefficients. This can be done computationally
using polynomial multiplication, for which libraries like NumPy can be useful.

8.2 The Central Limit Theorem

While PGFs provide an exact distribution, the calculation becomes unwieldy
for large n. The CLT provides a powerful and elegant approximation.

Theorem 8.2.1 (Central Limit Theorem). Let X1, X2, . . . be independent and
identically distributed (i.i.d.) random variables with expectation E(X1) = µ
and standard deviation SD(X1) = σ, where 0 < σ < ∞. Let Sn = X1 + · · · +
Xn be the sum of the first n variables. For large n, the distribution of Sn is
approximately normal with mean E(Sn) = nµ and variance Var(Sn) = nσ2.

To formalize this, we convert Sn to standard units:

Zn =
Sn − E(Sn)

SD(Sn)
=

Sn − nµ√
nσ

The CLT states that the cumulative distribution function (CDF) of Zn converges

to the standard normal CDF, Φ(z) = 1√
2π

∫ z

−∞ e−t2/2dt. For any number z:

P (Zn ≤ z) → Φ(z) as n → ∞

8.2.1 Using the Normal Approximation

The CLT allows us to approximate probabilities for Sn using the normal curve.
For large n:

P (Sn ≤ x) ≈ Φ

(
x− nµ√

nσ

)
Remark. Numerical libraries like SciPy in Python provide functions such as
‘scipy.stats.norm.cdf‘ to compute the values of Φ(z), making these calculations
straightforward in practice.

8.3 The Sample Mean

The CLT is often applied to the sample mean of a random sample.

Definition 8.3.1 (Sample Mean). Let X1, . . . , Xn be a random sample. The
sample mean is defined as:

X̄n =
1

n

n∑
i=1

Xi =
Sn

n
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8.3.1 Distribution of the Sample Mean

We can find the exact expectation and variance of the sample mean.

• Expectation: E(X̄n) = E( 1nSn) = 1
nE(Sn) = 1

n (nµ) = µ. The sample
mean is an unbiased estimator of the population mean.

• Variance: Var(X̄n) = Var( 1nSn) = ( 1n )
2Var(Sn) =

1
n2 (nσ

2) = σ2

n .

• Standard Deviation: SD(X̄n) =
√

σ2

n = σ√
n
.

This last result is known as the Square Root Law. It implies that the vari-
ability of the sample mean decreases as the square root of the sample size. To
double the accuracy of our estimate, we must collect four times as much data.

The CLT applies directly to the sample mean. For large n, the distribution
of X̄n is approximately normal with mean µ and standard deviation σ/

√
n.

8.4 Confidence Intervals

One of the most important applications of the CLT is in constructing confidence
intervals for an unknown population parameter, such as the mean µ.

Suppose we have a large random sample X1, . . . , Xn from a population with
unknown mean µ but known SD σ. The sample mean X̄n is our estimate for
µ. A confidence interval provides a range of plausible values for µ based on our
sample data.

8.4.1 Derivation of a 95% Confidence Interval

By the CLT, the sample mean X̄n is approximately normal with mean µ and
SD σ/

√
n. In standard units, the variable

Z =
X̄n − µ

σ/
√
n

is approximately standard normal. For the standard normal distribution, ap-
proximately 95% of the probability lies between -2 and +2.

P

(
−2 ≤ X̄n − µ

σ/
√
n

≤ 2

)
≈ 0.95

We can rearrange the inequalities to isolate the unknown parameter µ:

−2
σ√
n
≤ X̄n − µ ≤ 2

σ√
n

−X̄n − 2
σ√
n
≤ −µ ≤ −X̄n + 2

σ√
n

X̄n − 2
σ√
n
≤ µ ≤ X̄n + 2

σ√
n

This gives us a random interval [X̄n − 2 σ√
n
, X̄n + 2 σ√

n
] that contains the true

mean µ with approximately 95% probability.
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Definition 8.4.1 (Confidence Interval). An approximate 95% confidence in-
terval for the population mean µ is given by the interval:

X̄n ± 2
σ√
n

In practice, the population SD σ is often also unknown. For large samples, it
can be replaced by the sample standard deviation, SD(sample), without much
loss of accuracy.

Interpretation: A 95% confidence interval means that if we were to repeat
the sampling process many times and construct an interval for each sample,
about 95% of these intervals would contain the true, fixed population mean µ.
It is a statement about the reliability of the interval-generating process.



Chapter 9

Continuous Distributions

So far, we have dealt with discrete random variables, where probabilities are
found by summing over a countable set of values. We now turn our attention
to continuous random variables, which can take any value in a continuous
interval on the number line. For these variables, the concept of summing prob-
abilities is replaced by integration. Instead of a probability mass function, we
use a probability density function (PDF), and the probability of an event
is represented by the area under the curve of this function.

9.1 Density and CDF

Definition 9.1.1 (Probability Density Function (PDF)). A function f(x) is a
probability density function for a continuous random variableX if it satisfies
two conditions:

1. Non-negativity: f(x) ≥ 0 for all x.

2. Total Area is 1:
∫∞
−∞ f(x)dx = 1.

The probability that X falls within an interval [a, b] is the area under the density
curve over that interval:

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

Definition 9.1.2 (Cumulative Distribution Function (CDF)). The cumula-
tive distribution function (CDF) of a continuous random variable X, de-
noted F (x), gives the total probability up to a value x:

F (x) = P (X ≤ x) =

∫ x

−∞
f(t)dt

Conversely, the PDF can be recovered from the CDF by differentiation:

f(x) =
d

dx
F (x) = F ′(x)

55
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Example 9.1.3 (Uniform Distribution). A random variable X has a uniform
distribution on the interval (a, b), written X ∼ Uniform(a, b), if its PDF is
constant over the interval and zero elsewhere. To make the total area 1, the
height must be 1/(b− a).

f(x) =

{
1

b−a if a < x < b

0 otherwise

The CDF is the integral of the PDF. For x ∈ (a, b):

F (x) =

∫ x

a

1

b− a
dt =

x− a

b− a

9.2 The Meaning of Density

It is crucial to understand what the value of a density function f(x) represents.

• For a continuous random variable, the probability of taking any single exact
value is zero: P (X = c) =

∫ c

c
f(x)dx = 0.

• The density f(x) is not a probability. It can be greater than 1. For
example, a Uniform(0, 0.1) variable has a density of f(x) = 10 on its
domain.

• The density represents ”probability per unit length”. For a very small
interval dx around a point x, the probability that the variable falls in that
interval is approximately the area of a thin rectangle with height f(x) and
width dx.

P (X ∈ [x, x+ dx]) ≈ f(x)dx

9.3 Expectation

The concept of expectation extends naturally from sums to integrals.

Definition 9.3.1 (Expectation). The expected value of a continuous random
variable X with PDF f(x) is:

E(X) =

∫ ∞

−∞
xf(x)dx

Theorem 9.3.2 (Law of the Unconscious Statistician - LOTUS). If g is a
real-valued function, the expectation of the random variable g(X) is:

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx

This allows us to calculate E(g(X)) without first finding the PDF of g(X).
Using this, the computational formula for variance remains the same: Var(X) =
E(X2)− (E(X))2.
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Example 9.3.3 (Expectation of a Uniform(a,b) variable). LetX ∼ Uniform(a, b).

E(X) =

∫ b

a

x· 1

b− a
dx =

1

b− a

[
x2

2

]b
a

=
1

b− a

b2 − a2

2
=

(b− a)(b+ a)

2(b− a)
=

a+ b

2

The expectation is the midpoint of the interval, as expected.

9.4 The Exponential Distribution

The exponential distribution is often used to model waiting times until an event
occurs in a random process.

Definition 9.4.1 (Exponential Distribution). A random variable T has an ex-
ponential distribution with rate parameter λ > 0, written T ∼ Exponential(λ),
if its PDF is:

f(t) =

{
λe−λt if t ≥ 0

0 otherwise

9.4.1 CDF and Expectation

The CDF is found by integrating the PDF:

F (t) = P (T ≤ t) =

∫ t

0

λe−λxdx = [−e−λx]t0 = 1− e−λt, for t ≥ 0

The probability of ”surviving” past time t is P (T > t) = 1− F (t) = e−λt.
The expectation is found using integration by parts (u = t, dv = λe−λtdt):

E(T ) =

∫ ∞

0

t(λe−λt)dt = [−te−λt]∞0 −
∫ ∞

0

(−e−λt)dt = 0− [− 1

λ
e−λt]∞0 =

1

λ

If events arrive at a rate of λ per unit time, the average waiting time for an
event is 1/λ.

9.4.2 The Memoryless Property

The exponential distribution has a unique and crucial property among contin-
uous distributions.

Theorem 9.4.2 (Memoryless Property). For any s, t ≥ 0, if T ∼ Exponential(λ),
then:

P (T > t+ s | T > s) = P (T > t)

This means that given the event has not occurred by time s, the remaining
waiting time has the same distribution as the original waiting time. The process
”forgets” how long it has already waited.
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Proof. By the definition of conditional probability:

P (T > t+ s | T > s) =
P ({T > t+ s} ∩ {T > s})

P (T > s)

=
P (T > t+ s)

P (T > s)
(since if T¿t+s, then T¿s is implied)

=
e−λ(t+s)

e−λs
= e−λt−λs+λs = e−λt

= P (T > t)

This property directly connects the exponential distribution to the Poisson
process: the waiting times between successive events in a Poisson process with
rate λ are independent and identically distributed Exponential(λ) random vari-
ables.

9.5 The Standard Normal Distribution

The foundation of the normal family is the standard normal distribution.

Definition 9.5.1 (Standard Normal). A random variable Z has the standard
normal distribution, written Z ∼ N(0, 1), if its probability density function
(PDF), denoted ϕ(z), is given by:

ϕ(z) =
1√
2π

e−
1
2 z

2

, for −∞ < z < ∞

The function ϕ(z) is a symmetric, bell-shaped curve centered at 0. It can be
shown that

∫∞
−∞ ϕ(z)dz = 1.

Proposition 9.5.2 (Mean and Variance of a Standard Normal). For a standard
normal random variable Z:

1. E(Z) = 0

2. Var(Z) = 1

Proof. 1. Expectation:

E(Z) =

∫ ∞

−∞
zϕ(z)dz =

∫ ∞

−∞
z

1√
2π

e−
1
2 z

2

dz

The integrand g(z) = ze−z2/2 is an odd function, meaning g(−z) = −g(z).
The integral of an odd function over a symmetric interval (−∞,∞) is 0. Thus,
E(Z) = 0.

2. Variance: Since E(Z) = 0, Var(Z) = E(Z2)− (E(Z))2 = E(Z2).

E(Z2) =

∫ ∞

−∞
z2ϕ(z)dz =

∫ ∞

−∞
z · (zϕ(z))dz
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We use integration by parts with u = z and dv = zϕ(z)dz. Note that d
dzϕ(z) =

−zϕ(z), so dv = −dϕ(z).

E(Z2) =

∫ ∞

−∞
−z d(ϕ(z))

= [−zϕ(z)]
∞
−∞ −

∫ ∞

−∞
−ϕ(z)dz

= 0 +

∫ ∞

−∞
ϕ(z)dz = 1

The term [−zϕ(z)]∞−∞ evaluates to 0 because the exponential term e−z2/2 goes
to zero much faster than z goes to infinity. Thus, Var(Z) = 1.

Definition 9.5.3 (General Normal Distribution). A random variable X has a
normal distribution with mean µ and variance σ2, written X ∼ N(µ, σ2), if it
is a linear transformation of a standard normal variable Z:

X = σZ + µ

This implies E(X) = σE(Z) + µ = µ and Var(X) = σ2Var(Z) = σ2.

9.6 The Gamma Family

The gamma family of distributions is a versatile two-parameter family defined
on the positive real numbers.

Definition 9.6.1 (Gamma Function). The gamma function, Γ(r), is defined
for r > 0 by the integral:

Γ(r) =

∫ ∞

0

tr−1e−tdt

It has the properties Γ(r) = (r − 1)Γ(r − 1) and Γ(n) = (n − 1)! for integers
n ≥ 1.

Definition 9.6.2 (Gamma Distribution). A random variableX has the gamma
distribution with shape parameter r > 0 and rate parameter λ > 0, written
X ∼ Gamma(r, λ), if its PDF is:

f(x) =
λr

Γ(r)
xr−1e−λx, for x > 0

Proposition 9.6.3 (Mean and Variance of a Gamma Distribution). If X ∼
Gamma(r, λ):

1. E(X) = r/λ

2. Var(X) = r/λ2
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Proof. We compute E(Xk) by recognizing the form of the gamma PDF in the
integral.

E(Xk) =

∫ ∞

0

xk λr

Γ(r)
xr−1e−λxdx =

λr

Γ(r)

∫ ∞

0

xr+k−1e−λxdx

The integral
∫∞
0

xr+k−1e−λxdx is the kernel of a Gamma(r+k, λ) density, which

integrates to Γ(r+k)
λr+k .

E(Xk) =
λr

Γ(r)

Γ(r + k)

λr+k
=

Γ(r + k)

Γ(r)λk

For k = 1: E(X) = Γ(r+1)
Γ(r)λ = rΓ(r)

Γ(r)λ = r
λ . For k = 2: E(X2) = Γ(r+2)

Γ(r)λ2 =
(r+1)rΓ(r)

Γ(r)λ2 = r(r+1)
λ2 . The variance is Var(X) = E(X2) − (E(X))2 = r(r+1)

λ2 −(
r
λ

)2
= r2+r−r2

λ2 = r
λ2 .

Theorem 9.6.4 (Sum of Independent Gammas). If X ∼ Gamma(r, λ) and
Y ∼ Gamma(s, λ) are independent, then their sum is also gamma distributed:

X + Y ∼ Gamma(r + s, λ)

The shape parameters add, provided the rate parameter is the same.

9.7 The Chi-Squared Distribution

The chi-squared distribution is a special case of the gamma distribution that is
central to statistical hypothesis testing.

Definition 9.7.1 (Chi-Squared Distribution). A random variable X has the
chi-squared distribution with n degrees of freedom, writtenX ∼ χ2(n), if
it has a Gamma distribution with shape parameter r = n/2 and rate parameter
λ = 1/2.

X ∼ χ2(n) ≡ Gamma(n/2, 1/2)

The mean is E(X) = (n/2)/(1/2) = n and the variance is Var(X) =
(n/2)/(1/2)2 = 2n.

The primary importance of this distribution comes from its relationship to
the standard normal.

Theorem 9.7.2. If Z1, Z2, . . . , Zn are independent standard normal random
variables, then the sum of their squares has a chi-squared distribution with n
degrees of freedom.

n∑
i=1

Z2
i ∼ χ2(n)

Proof. The proof proceeds in two steps:
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1. Distribution of one squared normal, Z2
1 : We showed in a previous

lecture that if Z1 ∼ N(0, 1), its square Y = Z2
1 has the PDF fY (y) =

1√
2πy

e−y/2 for y > 0. This is exactly the PDF of a Gamma(1/2, 1/2)

distribution, which is by definition a χ2(1) distribution.

2. Sum of squares: The sum S =
∑n

i=1 Z
2
i is a sum of n independent

and identically distributed χ2(1) random variables. Since χ2(1) is just
Gamma(1/2, 1/2), we are summing n independent Gamma variables with
the same rate parameter λ = 1/2. By the additive property of the gamma
family, the sum is distributed as:

S ∼ Gamma

(
1

2
+ · · ·+ 1

2
,
1

2

)
= Gamma

(
n

2
,
1

2

)
≡ χ2(n)

This completes the proof.
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Chapter 10

Transformations of Random
Variables

If we know the probability distribution of a random variable X, we are often
interested in finding the distribution of a function of X, say Y = g(X). For
example, if X is a measurement in inches, we might want the distribution of
Y = 2.54X, the same measurement in centimeters. This process is called finding
the distribution of a transformation of a random variable. The goal is to
derive the density of Y , fY (y), from the density of X, fX(x). The general
method involves first finding the cumulative distribution function (CDF) of Y
and then differentiating it to get the probability density function (PDF).

10.1 Linear Transformations

Let’s start with the simplest case: a linear transformation Y = aX + b.

Theorem 10.1.1. Let X be a random variable with PDF fX(x), and let Y =
aX + b for constants a ̸= 0 and b. The PDF of Y is given by:

fY (y) = fX

(
y − b

a

)
1

|a|

Proof. We find the CDF of Y first. Let’s assume a > 0.

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P

(
X ≤ y − b

a

)
= FX

(
y − b

a

)
Now, we differentiate with respect to y using the chain rule to find the PDF of
Y .

fY (y) =
d

dy
FY (y) =

d

dy
FX

(
y − b

a

)
= F ′

X

(
y − b

a

)
· 1
a
= fX

(
y − b

a

)
1

a
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If a < 0, the inequality flips:

FY (y) = P (aX + b ≤ y) = P

(
X ≥ y − b

a

)
= 1− FX

(
y − b

a

)
Differentiating this gives:

fY (y) = − d

dy
FX

(
y − b

a

)
= −fX

(
y − b

a

)
· 1
a
= fX

(
y − b

a

)
1

|a|

Both cases combine to give the general formula.

10.2 Monotone Functions

The method used for linear transformations can be generalized to any strictly
monotone (always increasing or always decreasing) function g.

Theorem 10.2.1 (Change of Variable Formula for Density). Let X be a random
variable with PDF fX(x). Let g be a smooth, strictly monotone function, and
let Y = g(X). The PDF of Y is given by:

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣

where x = g−1(y) is the unique solution for x in terms of y.

Proof. Suppose g is strictly increasing. The inverse function x = g−1(y) is
well-defined.

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y))

Differentiating with respect to y:

fY (y) =
d

dy
FX(g−1(y)) = fX(g−1(y)) · d

dy
g−1(y) = fX(x)

dx

dy

Since g is increasing, dx/dy > 0, so we can write this as fX(x)|dx/dy|. If g is
strictly decreasing, the inequality flips:

FY (y) = P (g(X) ≤ y) = P (X ≥ g−1(y)) = 1− FX(g−1(y))

Differentiating gives fY (y) = −fX(g−1(y)) · d
dy g

−1(y) = fX(x)(−dx
dy ). Since g is

decreasing, dx/dy < 0, so (−dx
dy ) = |dxdy |. The formula holds in both cases.

Example 10.2.2 (Density of X3). Let X ∼ Uniform(0, 1), so fX(x) = 1 for
x ∈ (0, 1). Let Y = X3. The function g(x) = x3 is strictly increasing on (0, 1).
The inverse is x = y1/3. The derivative is dx

dy = 1
3y

−2/3. The possible values of

Y are in (0, 1). For y ∈ (0, 1):

fY (y) = fX(y1/3)

∣∣∣∣13y−2/3

∣∣∣∣ = 1 · 1
3
y−2/3 =

1

3
y−2/3

This is a Beta distribution.
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10.3 Simulation via the Inverse CDF

A remarkable application of the change of variable formula is a method to gener-
ate random numbers from any desired distribution using only a standard uniform
random number generator.

Theorem 10.3.1 (Probability Integral Transform). Let X be a continuous ran-
dom variable with a strictly increasing CDF, FX . Then the random variable
U = FX(X) has a Uniform(0,1) distribution.

Proof. Let U = FX(X). The possible values of U are in (0, 1). For any u ∈ (0, 1):

P (U ≤ u) = P (FX(X) ≤ u) = P (X ≤ F−1
X (u))

The last step holds because FX is strictly increasing, so its inverse F−1
X exists.

By definition, P (X ≤ x0) = FX(x0). So,

P (U ≤ u) = FX(F−1
X (u)) = u

This is the CDF of a Uniform(0,1) distribution.

Theorem 10.3.2 (Inverse CDFMethod for Simulation). Let U ∼ Uniform(0, 1),
and let F be any CDF. Then the random variable X = F−1(U) has the CDF
F .

Proof.

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x)

The last step holds because P (U ≤ u) = u for a uniform variable. Thus, X has
the desired CDF F .

This theorem provides a practical method for simulation: to generate a ran-
dom number from a distribution with CDF F , we generate a standard uniform
number u and then compute F−1(u).

Example 10.3.3 (Simulating an Exponential Variable). Let’s generate a vari-
able from an Exponential(λ) distribution. The CDF is F (x) = 1 − e−λx. We
need to find the inverse F−1(u). Set u = 1 − e−λx. Then e−λx = 1 − u, so
−λx = log(1 − u), which gives x = − 1

λ log(1 − u). If U ∼ Uniform(0, 1), then
1− U is also Uniform(0,1). So we can use the simpler formula X = − 1

λ log(U)
to generate an Exponential(λ) variate.

10.4 Two-to-One Functions

The change of variable formula does not directly apply if the function g is not
one-to-one. In such cases, we must revert to the CDF method and sum the
contributions from all branches of the inverse function.
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Example 10.4.1 (Density of X2). Let X be a continuous random variable with
PDF fX(x). Let Y = X2. Find the PDF of Y . The function g(x) = x2 is not
monotone. The possible values of Y are non-negative. For any y > 0:

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y)

FY (y) = FX(
√
y)− FX(−√

y)

Now we differentiate with respect to y using the chain rule:

fY (y) =
d

dy
FX(

√
y)− d

dy
FX(−√

y)

= fX(
√
y) · 1

2
√
y
− fX(−√

y) ·
(
− 1

2
√
y

)
=

1

2
√
y
(fX(

√
y) + fX(−√

y)) , for y > 0

This formula combines the contributions from the positive and negative values
of X that map to the same value of Y .

Example 10.4.2 (Standard Normal Squared is Chi-Squared). Let Z ∼ N(0, 1),

so its PDF is ϕ(z) = 1√
2π

e−z2/2. Let Y = Z2. Using the formula derived above

with fZ(z) = ϕ(z): For y > 0,

fY (y) =
1

2
√
y
(ϕ(

√
y) + ϕ(−√

y))

=
1

2
√
y

(
1√
2π

e−(
√
y)2/2 +

1√
2π

e−(−√
y)2/2

)
=

1

2
√
y

(
2 · 1√

2π
e−y/2

)
=

1√
2πy

e−y/2

This is the PDF of the gamma distribution with shape parameter 1/2 and rate
parameter 1/2. This specific distribution is also known as the chi-squared
distribution with 1 degree of freedom.



Chapter 11

Joint Continuous
Distributions

We now extend the concept of density from a single continuous random variable
to two or more variables. This allows us to model the relationship between mul-
tiple continuous quantities. The joint probability density function (joint
PDF) of two variables, say X and Y , is a surface in three-dimensional space.
The probability that the pair (X,Y ) falls into a certain region in the plane is
the volume under this surface and over that region.

11.1 Joint Density Functions

Definition 11.1.1 (Joint PDF). A function f(x, y) is a joint probability
density function for two continuous random variables X and Y if it satisfies
two conditions:

1. Non-negativity: f(x, y) ≥ 0 for all x, y.

2. Total Volume is 1:
∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1.

11.1.1 Probabilities and Expectations

The probability that the pair (X,Y ) falls into a region A in the plane is found
by integrating the joint PDF over that region:

P ((X,Y ) ∈ A) =

∫∫
A

f(x, y)dxdy

For a small region dxdy around a point (x, y), the probability is approximately
the volume of a small column:

P (X ∈ [x, x+ dx], Y ∈ [y, y + dy]) ≈ f(x, y)dxdy

The expectation of a function g(X,Y ) is found by integrating the function
against the joint PDF over the entire plane.
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Definition 11.1.2 (Expectation). The expected value of a function g(X,Y ) is:

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy

Example 11.1.3 (Uniform Density on a Square). Let the pair (X,Y ) be chosen
uniformly from the unit square {(x, y) : 0 < x < 1, 0 < y < 1}. To make the
total volume 1, the joint PDF must be constant with height 1 inside the square
and 0 elsewhere.

f(x, y) =

{
1 if 0 < x < 1, 0 < y < 1

0 otherwise

Let’s find the probability P (X > Y ). This corresponds to the region where
0 < y < x < 1.

P (X > Y ) =

∫ 1

0

∫ x

0

1 dydx =

∫ 1

0

[y]x0dx =

∫ 1

0

x dx =

[
x2

2

]1
0

=
1

2

This makes sense, as by symmetry, the chance that X > Y should be the same
as the chance that Y > X.

11.2 Independence

The concept of independence for continuous random variables is analogous to
the discrete case.

Definition 11.2.1 (Independence). Two continuous random variables X and
Y with joint PDF f(x, y) are independent if their joint PDF is the product of
their individual (marginal) PDFs, fX(x) and fY (y):

f(x, y) = fX(x)fY (y) for all x, y

A useful shortcut is that if the joint domain of the variables is a rectangle
(or a product of intervals) and the function f(x, y) factors into a part that
only depends on x and a part that only depends on y, then the variables are
independent.

Example 11.2.2 (Uniform on a Square, Revisited). For (X,Y ) uniform on the
unit square, we have f(x, y) = 1 for (x, y) ∈ (0, 1)×(0, 1). The marginal density

of X is fX(x) =
∫ 1

0
1 dy = 1 for x ∈ (0, 1). Similarly, fY (y) = 1 for y ∈ (0, 1).

Thus, fX(x)fY (y) = 1 · 1 = 1 = f(x, y) for (x, y) in the square. This confirms
that X and Y are independent, and both are Uniform(0,1).

Example 11.2.3 (Uniform on a Triangle). Let (X,Y ) be chosen uniformly
from the triangle {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}. The area of this triangle is
1/2. To make the total volume 1, the joint PDF must be f(x, y) = 2 inside the
triangle and 0 elsewhere. The variables X and Y are not independent. The
domain of possible values is not a rectangle; for instance, if X = 0.8, then Y is
restricted to be less than 0.2. The value of one variable restricts the possible
values of the other.



11.3. MARGINAL AND CONDITIONAL DENSITIES 69

11.3 Marginal and Conditional Densities

11.3.1 Marginal Density

From the joint PDF, we can recover the PDF of a single variable by ”integrating
out” the other variable. This is analogous to summing out a variable in a discrete
joint distribution table.

Definition 11.3.1 (Marginal PDF). Themarginal probability density func-
tion of X is given by:

fX(x) =

∫ ∞

−∞
f(x, y)dy

And similarly for Y :

fY (y) =

∫ ∞

−∞
f(x, y)dx

Example 11.3.2 (Marginals for Uniform on a Triangle). Let’s find the marginal
PDF of X for the uniform distribution on the triangle {(x, y) : x ≥ 0, y ≥
0, x + y ≤ 1}, where f(x, y) = 2. The possible values for x are in the interval
(0, 1). For a fixed x in this interval, y can range from 0 to 1− x.

fX(x) =

∫ 1−x

0

2 dy = [2y]1−x
0 = 2(1− x), for 0 < x < 1

By symmetry, the marginal PDF of Y is fY (y) = 2(1− y) for 0 < y < 1.

11.3.2 Conditional Density

Conditioning in continuous distributions follows the same division rule as in
other contexts.

Definition 11.3.3 (Conditional PDF). The conditional probability density
function of Y given X = x is defined as:

fY |X(y|x) = f(x, y)

fX(x)

This is defined for all x where the marginal density fX(x) > 0. For a fixed x,
the function fY |X(y|x) is itself a valid PDF in y, meaning it is non-negative and
integrates to 1.

Example 11.3.4 (Conditionals for Uniform on a Triangle). Let’s find the con-
ditional density of Y given X = x for the uniform on a triangle example. We
have f(x, y) = 2 and fX(x) = 2(1− x) for values in the appropriate ranges.

fY |X(y|x) = 2

2(1− x)
=

1

1− x
, for 0 < y < 1− x

This result is very intuitive: given that X = x, the possible values of Y are
restricted to the vertical line segment from (x, 0) to (x, 1− x). The conditional
distribution of Y is uniform on this interval (0, 1− x).
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11.3.3 Conditional Expectation

Once we have the conditional density, we can define the conditional expectation.

Definition 11.3.5 (Conditional Expectation). The conditional expectation of
Y given X = x is the expectation calculated using the conditional density:

E(Y |X = x) =

∫ ∞

−∞
yfY |X(y|x)dy

Example 11.3.6 (Conditional Expectation for Uniform on a Triangle). Given
X = x, we know Y is uniform on (0, 1 − x). The expectation of a uniform
variable is its midpoint. So,

E(Y |X = x) =
1− x

2

This defines the conditional expectation of Y given X as a function of X:
E(Y |X) = (1−X)/2. We can check the law of iterated expectations: E(E(Y |X)) =
E( 1−X

2 ) = 1
2 (1−E(X)). From the marginal fX(x) = 2(1−x), we can calculate

E(X) =
∫ 1

0
x · 2(1 − x)dx = 1/3. So E(E(Y |X)) = 1

2 (1 − 1/3) = 1/3. This
matches E(Y ), as it should.
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Moments and Moment
Generating Functions

12.1 Moment Generating Functions

A less direct but often simpler method uses moment generating functions (MGFs).

Definition 12.1.1 (Moment Generating Function). The moment generating
function (MGF) of a random variable X, denoted MX(t), is defined as:

MX(t) = E(etX)

for all real t for which the expectation exists.

The MGF is so named because its derivatives at t = 0 generate the moments
of X.

M ′
X(t) =

d

dt
E(etX) = E

(
d

dt
etX
)

= E(XetX) =⇒ M ′
X(0) = E(X)

M ′′
X(t) = E(X2etX) =⇒ M ′′

X(0) = E(X2)

In general, M
(k)
X (0) = E(Xk) is the k-th moment of X.

12.1.1 Properties of MGFs

1. Uniqueness: If two random variables have MGFs that are equal on an
interval around t = 0, then they have the same distribution.

2. MGF of a Sum: If X and Y are independent, the MGF of their sum is
the product of their MGFs.

MX+Y (t) = MX(t)MY (t)

Proof. MX+Y (t) = E(et(X+Y )) = E(etXetY ) = E(etX)E(etY ) by indepen-
dence. This is MX(t)MY (t).
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12.2 MGFs, the Normal Distribution, and the
CLT

We can now use MGFs to prove fundamental results about the normal distri-
bution.

Proposition 12.2.1 (MGF of a Normal Distribution). If X ∼ N(µ, σ2), its

MGF is MX(t) = etµ+
1
2σ

2t2 .

Proof. First, let Z ∼ N(0, 1).

MZ(t) = E(etZ) =

∫ ∞

−∞
etz

1√
2π

e−
1
2 z

2

dz =
1√
2π

∫ ∞

−∞
e−

1
2 (z

2−2tz)dz

We complete the square in the exponent: z2 − 2tz = (z − t)2 − t2.

MZ(t) =
1√
2π

∫ ∞

−∞
e−

1
2 ((z−t)2−t2)dz = e

1
2 t

2

∫ ∞

−∞

1√
2π

e−
1
2 (z−t)2dz

The integral is the total area under a normal density with mean t and variance
1, which is 1. Thus, MZ(t) = et

2/2. Now for X = σZ + µ:

MX(t) = E(et(σZ+µ)) = etµE(e(tσ)Z) = etµMZ(tσ) = etµe
1
2 (tσ)

2

= etµ+
1
2σ

2t2

Theorem 12.2.2 (Sum of Independent Normals). If X ∼ N(µX , σ2
X) and

Y ∼ N(µY , σ
2
Y ) are independent, then their sum S = X+Y is also normal with

mean µX + µY and variance σ2
X + σ2

Y .

Proof. We use the MGF property for sums:

MS(t) = MX(t)MY (t) =
(
etµX+ 1

2σ
2
Xt2
)(

etµY + 1
2σ

2
Y t2
)
= et(µX+µY )+ 1

2 (σ
2
X+σ2

Y )t2

By the uniqueness property of MGFs, this is the MGF of a normal random
variable with mean µX + µY and variance σ2

X + σ2
Y .

12.2.1 Proof of the Central Limit Theorem (Sketch)

MGFs provide a way to prove the Central Limit Theorem. Let X1, X2, . . . be
i.i.d. with mean 0 and variance 1. Let MX(t) be their common MGF. Let
Sn =

∑n
i=1 Xi, and let Zn = Sn/

√
n be the standardized sum. We want to

show that the MGF of Zn converges to et
2/2, the MGF of the standard normal.

MZn(t) = E
(
etSn/

√
n
)
= MSn

(
t√
n

)
=

(
MX

(
t√
n

))n

Now we use the Taylor expansion of MX(s) around s = 0.

MX(s) = MX(0) +M ′
X(0)s+

M ′′
X(0)

2!
s2 +O(s3)
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Since E(X) = 0 and E(X2) = 1, we have M ′
X(0) = 0 and M ′′

X(0) = 1. Also
MX(0) = 1.

MX(s) = 1 +
1

2
s2 +O(s3)

Let s = t/
√
n. For large n, s is small.

MX

(
t√
n

)
= 1 +

1

2

t2

n
+O

(
t3

n3/2

)
Now we take the n-th power:

MZn(t) =

(
1 +

t2/2

n
+ . . .

)n

This expression is of the form (1 + c
n + smaller terms)n. As n → ∞, this

converges to ec. In our case, c = t2/2.

lim
n→∞

MZn
(t) = et

2/2

By the uniqueness property, the distribution of Zn converges to the standard
normal distribution.
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