Lecture | Topic | Reading | Homework |
1 | Introduction to regression | ROS Ch.6 | |
2 | Linear regression with a single predictor | ROS Ch.7 | Ex 6.2, 6.3, 6.6, 7.7, 7.8 |
3 | Fitting linear regression | ROS Ch.8 | |
4 | Prediction and Bayesian inference | ROS Ch.9 | |
5 | Linear regression with multiple predictors | ROS Ch.10 | Ex 8.9, 9.7, 10.6(a), 10.7 |
6 | Model diagnostics and evaluation | ROS Ch.11 | |
7 | Cross validation and log transformations | ROS Ch.11, 12 | |
8 | Comparing regression models | ROS Ch.12 | |
9 | Logistic regression | ROS Ch.13, 14 | Ex 11.5, 12.6(a)-(c), 12.7(a) |
10 | Interactions, APD, diagnostics | ROS Ch.14 | |
11 | Generalized linear models | ROS Ch.15 | |
12 | Basics of causal inference | ROS Ch.18 | |
13 | Causal inference with regression | ROS Ch.19 | Ex 18.1, 18.2, 18.4(a), 18.5 |
14 | Causal inference with observational data | ROS Ch.20 | |
15 | Subclassification and propensity score matching | ROS Ch.20 | |
16 | Instrumental variables | ROS Ch.21.1-2 | |
17 | Regression discontinuity | ROS Ch.21.3 | Pdf and data |
18 | Difference-in-Differences | ROS Ch.21.4 | |
19 | Panel data | ROS Ch.21.4 | |
20 | Synthetic control | | |
21 | Conformal prediction | | |
22 | Jackknife+, CV+, Quantile regression and classification | | |