
208891 Probabilistic Graphical Models Spring 2019

Lecture 1: December 19
Lecturer: Donlapark Pornnopparath

The notes for this course will closely follow Koller and Friedman (2009) and Kuleshov and Ermon (2019).

1.1 Motivation

In this course, we try to solve real-world problems using probabilistic modeling. As a motivating example,
suppose we want to predict the price of a house from various factors such as the location, the number
of bedrooms, the total floor area, etc. Probably the most basic model for this type of tasks is the linear
regression,

y =

m∑
i=0

βixi,

where y is the house price and xi’s are the other factors. However, real life decisions often involves uncertainty
we have to take into account. For example, if there is a new mall opening nearby, then the house prices
around the area is going to rise. Hence, it might be appropriate to deal with the uncertainties using the
probabilistic model,

P(Y = y|X1 = x1, X2 = x2, . . . , Xm = xm).

Here, Y andXi’s are random variables that can have multiple values. Assume, for simplicity, that all variables
are discrete, then the most straightforward way to build the model is to compute the joint probability

P(Y = y,X1 = x1, X2 = x2, . . . Xm = xm),

for all possible y and xi’s. However, the computation becomes intractable when the number of variables is
very high as in the case of DNA sequences or images. We therefore introduce the probabilistic graphical model
framework represents the relations between variables in a compact way and in turn reduces the amount of
computation.

Example 1.1. To illustrate this point, we consider the problem of medical diagnosis between cold and allergy,
where we also have the following related factors: season and symptoms of having a fever and congestion.
Then the number of joint probabilities we need to compute is 2 × 2 × 4 × 2 × 2 = 64 which is already
relatively high compared to the size of the problem. Alternatively, we could use our prior knowledge about
the relations among these variables and create the graphical model as in Figure 1.1. This model indicates

Season

Fever Runny nose

AllergyCold

Figure 1.1: Graphical representation of the medical diagnosis between cold and allergy.
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the follows independencies:

(C ⊥⊥ A|S)

(A ⊥⊥ F,C|S)

(F ⊥⊥ R,A, S|C)

(R ⊥⊥ F, S|C,A)

We will expand on how to find these later in the course. Together with Pr(S), the joint distribution of five
variables can be computed using

P(S,C,A, F,R) = P(S)P(C|S)P(A|S)P(F |C)P(R|C,A).

In other words, the full probabilistic model can be parametrized by the following five quantities: P(S),
P(C|S), P(A|S), P(F |C) and P(R|C,A). To completely characterize the model, we are now required to
compute only 3 + 4 + 4 + 2 + 4 = 17 parameters instead of 63. Therefore, by injecting prior knowledge into
the probabilistic model, we can reduce it into a representation whose distribution can be tractably estimated
from data. �

Example 1.2. Another example comes from the most basic spam filtering method – the Näıve Bayes
classifier. Suppose that we want to classify each email into either spam (y = 1) or not spam (y = 0) from
the words in the email. Then the probabilistic model we want to look at is

P(y = 1|x1, x2, . . . , xm),

where xi indicates whether the i-th English word in the dictionary appears in the email. To characterize the
full model, we would need to compute 2m+1−1 parameters which is intractable even with modern computing
power. The idea behind the Näıve Bayes classifier is to simplify the model by imposing an assumption that
all words are conditionally independent i.e.

P(x1, x2, . . . , xm|y) = P(x1|y)P(x2|y) . . .P(xm|y),

which has a graphical representation as in Figure 1.2. Then we have the following factorization of the joint

y

x1 x2 x3 xm. . .

Figure 1.2: Graphical representation of the Näıve Bayes classifier.

probability
P(y, x1, x2, . . . , xm) = P(y)P(x1|y)P(x2|y) . . .P(xm|y),

which requires only 2m+ 1 nonredundant parameters. �

1.2 Applications

There are many more tasks that benefit from graphical models. Here are some examples.

• Images: Each node in the graph represents each pixel and every two nodes are connected if they
are adjacent. If we consider a segmentation problem that separate the foreground object from the
background, then we might want to impose some probabilistic conditions that encourage the adjacent
pixels with similar color to have the same label.
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Figure 1.3: A graphical representation of an image.

• DNA sequencing: We can model a long sequence of DNA genomes by a Markov chain, where each
node can take values in {A,C,G, T}.

Figure 1.4: A Markov chain.

• Part-of-speech tagging: We can also fit the task of tagging each word in a sentence with its part of
speech in a probabilistic framework. One way to do this is to treat each tag as a hidden states that
is connected to the corresponding word and has a probability of transitioning into each of all possible
part of speeches. Then, an appropriate sequence of tags is the one that maximize the probability of
the observed sentence. This is an example of a hidden Markov model.

MD PRP VB DT NN

Can you book that flight

Figure 1.5: A hidden Markov model for part-of-speech tagging

• Click modeling (Chapelle and Zhang, 2009): We can also build a personalized model that can predict
whether a user will click on a particular link in a search list. Let i be the position of the link and Ci

indicates whether the user click on it. Then we can model Ci using several hidden binary variables:

– Ei = 1 if the user examined the url, 0 otherwise.

– Ai = 1 if the user was attracted to the url, 0 otherwise.

– Si = 1 if the user was satisfied by the page, 0 otherwise,

together with some probability conditions that are conform with these definitions. The resulting model
(Figure 1.6) is a dynamic Bayesian network which relates variables to each others across the sequence.
After the inference, we can use the model to compute the probability that the user will click the i-th
url in a search query.
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Figure 1.6: Dynamic Bayesian network of the click model

1.3 Basic definitions

1.3.1 Graphs

As we have seen, there are two types of graphs depending on whether the nodes are connected by simple
edges or directed by arrows.

Definition 1.3. A (undirected) graph is a pair of set G = (V,E) where V = {X1, X2, . . . , Xn} is the
set of nodes and E ⊆ {{Xi, Xj}, 1 ≤ i 6= j ≤ n} is the set of edges. We say that G is a directed graph
if the edges are the ordered pairs of nodes i.e. E ⊆ {(Xi, Xj), 1 ≤ i 6= j ≤ n}

Definition 1.4. We write Xi −Xj for {Xi, Xj} ∈ E. In this case, we say that Xi is a neighbor of Xj .
The set of all neighbors of Xi is denoted by N (Xi).

Definition 1.5. We write Xi → Xj for (Xi, Xj) ∈ E. In this case, we say that Xi is a parent of Xj

and Xj is a child of Xi. The set of all parents of Xj is denoted by Pa(Xj) and the set of all children of
Xi is denoted by Ch(Xi).

Definition 1.6. We say that Xi is adjacent to Xj if Xi → Xj or Xj → Xi.

We sometimes consider a type of graphs that contain all possible edges.

Definition 1.7. A graph G is complete if every pair of node is connected by an edge.

1.4 Subgraphs

Definition 1.8. G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V , E′ ⊆ E and for any {Xi, Xj} ∈ E′
(or (Xi, Xj) ∈ E′) we have Xi, Xj ∈ V ′.

Definition 1.9. A clique C in a graph G is a complete subgraph of G. We say that a clique is maximal
if there is no other clique in G that strictly contains C.
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1.5 Paths, cycles and connected components

Definition 1.10. A path in a graph G(V,E) is a sequence of distinct nodes (X1, X2, . . . , Xk) such that
(Xi, Xi+1) ∈ E (or {Xi, Xj} ∈ E) for all i = 1, 2, . . . , k − 1.

Therefore, in a directed graph G, we can traverse along any path in the direction of the edges. On the other
hand, if a sequence in G contains a subgraph of the form Xi−1 ← Xi → Xi+1 or Xi−1 → Xi ← Xi+1, then
it is not a path. The following names will be used to relate any two distinct nodes in a path.

Definition 1.11. In a directed graph. A node X is an ancestor of a node Y if there is a path from X
to Y .

Definition 1.12. In a directed graph. A node X is a decendant of a node Y if there is a path from Y
to X.

Sometimes we want to travel along edges ignoring their directions. In this case, we might want to consider
trails.

Definition 1.13. A sequence of distinct nodes (X1, X2, . . . , Xk) in a directed graph G is a trail if it is
a path in the undirected version of G.

Definition 1.14. An undirected graph is connected if for every distinct Xi, Xj there is a path from Xi

to Xj . A directed graph is connected if its undirected version is connected.

Definition 1.15. A connected component H is a maximal connected subgraph, that is, there is no
larger connected subgraph that strictly contains H.

Definition 1.16. A cycle in a graph G = (V,E) is a sequence of nodes (X1, X2, . . . , Xk) such that
(Xi, Xi+1) ∈ E for all i = 1, 2, . . . , k − 1, X1 = Xk and Xi 6= Xj for (i, j) 6= (1, k).

Definition 1.17. A directed acyclic graph (DAG) is a directed graph that contains no cycles.

Example 1.18. The graph in Figure 1.7 has two connected components, a path (b, a, e, f, g), a cycle
(a, b, c, d, e, a) and a maximal clique (a, b, c, d). N (a) = {b, c, d, e} and N (f) = {e, g}. �
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Figure 1.7: A graph with two connected components.

Example 1.19. In the directed graph in Figure 1.8, a, b are ancestors of c and d, e are descendant of c.
Here, (b, c, e, b) is a cycle while (a, c, d, a) is not. �
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Figure 1.8: An example of a directed graph
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