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12.1 Parameter estimation

As mentioned in the previous sections, when data are missing, the parameters in the likelihood function
cannot be decomposed in general, causing the function to be highly complex and non-convex. There are two
optimization methods what we could use to approximate the MLE estimator.

12.1.1 Gradient ascent

This is a standard convex optimization method that can be applied to non-convex function. However, the
solution that we obtain might only be a local maxima and not the global one. The main idea behind the
algorithm is to always climb the surface of the log-likelihood function LL(θ|D) uphill, meaning that, in each
step, the parameters θ are moved in the “same” direction as that of ∇θLL(θ|D). More precisely, we perform
the following algorithm:

1. Initialize parameters θ0.

2. At t–th step, we move the parameters using θt = θt−1 + η∇LL(θt−1, D).

Here, η ∈ R+ is the step size which should be small enough that the parameters eventually stabilize at a
local maxima.

Example 12.1. Suppose that we have a simple graph as in Figure 12.1 with three variables: A ∈ {0, 1},
B ∈ {0, 1}, C ∈ {0, 1}. Then the parameters we have to learn are θ = (θA, θB , θC|0,0, θC|0,1, θC|1,0, θC|1,1).
Suppose that we observe D1 = {(0, ?, 1)} and D2 = {(1, ?, 0)}. Then the log-likelihood function of D =

A B

C

Figure 12.1: A little v

D1 ∪D2 is

LL(θ|D) = log((1− θA)θBθC|0,1 + (1− θA)(1− θB)θC|0,0).

+ log(θAθB(1− θC|1,1) + θA(1− θB)(1− θC|1,0)).

For example, in each step, the value of θC|1,1 is added by

η
∂LL(θ|D)

∂θC|1,1
= − ηθAθB

θAθB(1− θC|1,1) + θA(1− θB)(1− θC|1,0)
(12.1)
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Suppose that we set η = 0.1 and the current values of parameters is θA = 0.1, θB = 0.3 and θC|1,0 = θC|1,1 =
0.5. Plugging these in (12.1), we obtain

η
∂LL(θ|D)

∂θC|1,1
= 0.06.

�

Thus, the value of θC|1,1 is updated as follows:

θC|1,1 ← θC|1,1 + η
∂LL(θ|D)

∂θC|1,1
= 0.5 + 0.06 = 0.56.

12.1.2 Expectation-maximization (EM)

In contrast to gradient ascent, the expectation-maximization algorithm is designed to optimize likelihood
functions. Suppose that we have data D = {(x(n), z(n))}Nn=1 where x(n) is the observed variables and z(n) is
the missing variables. Recall that our goal is to maximize the log-likelihood function

LL(θ|D) =
∑
n

logP (x(n), z(n)|θ) =
∑
n

log

(∑
z(n)

P (x(n)|z(n),θ)P (z(n)|θ)

)
.

This can be done with various optimization methods, which might involve heavy computations due to the
logarithm being outside of the summation. This is not a problem if we use the EM algorithm.

EM algorithm: A parameter θ0 is initialized. Then following two steps are performed to obtain θ1,θ2, . . .
until convergence.

• E-Step: For each n, compute the posterior p(z(n)|x(n),θt) and the expected log-likelihood.

Qn(θ) = Ez∼p(z(n)|x(n),θt) log p(x(n), z|θ).

Let’s focus on the posterior term for now. Intuitively, we are trying to “fill” the missing variables with
the underlying probability distributions.

• M-Step: Compute the new parameters using

θt+1 = arg max
θ

∑
n

Qn

= arg max
θ

∑
n

Ez∼p(z(n)|x(n),θt) log p(x(n), z|θ)

In contrast to the original optimization problem, the logarithm is now inside the summation, which
makes it easier to find a solution. Even though the solution that we obtain in this step does not exactly
solve the original problem, it can be shown that LL(θt|D) is increasing and converges to a maxima as
t→∞.

Example 12.2. We use the same setup as in Example 12.1 but with D1 = {(1, ?, 1)} and D2 = {(?, 1, 0)}.
Suppose that we have obtained θt = (0.2, 0.3, 0.5, 0.8, 0.1, 0.4). The posterior distributions in the E-Step are

p(b = 1|1, 1,θt) =
0.2 · 0.3 · 0.4

0.2 · 0.3 · 0.4 + 0.2 · 0.7 · 0.1
= 0.63

p(a = 1|1, 0,θt) =
0.2 · 0.3 · 0.6

0.2 · 0.3 · 0.6 + 0.8 · 0.3 · 0.9
= 0.14.
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Let θ = (θA, θB , θC|0,0, θC|0,1, θC|1,0, θC|1,1) be the parameters that we want to optimize in the M-Step. It
follows that

Q1(θ) = p(b = 0|1, 1,θt) log
(
θA(1− θB)θC|1,0

)
+ p(b = 1|1, 1,θt) log

(
θAθBθC|1,1

)
= 0.37 log

(
θA(1− θB)θC|1,0

)
+ 0.63 log

(
θAθBθC|1,1

)
Q2(θ) = p(a = 0|1, 0,θt) log

(
(1− θA)θB(1− θC|0,1)

)
+ p(a = 1|1, 0,θt) log

(
θAθB(1− θC|1,1)

)
= 0.86 log

(
(1− θA)θB(1− θC|0,1)

)
+ 0.14 log

(
θAθB(1− θC|1,1)

)
.

Notice that we can optimize Q = Q1 + Q2 by considering each of the parameters separately. For example,
the optimal value of θC|1,1 can be found by solving

∂Q(θ)

∂θC|1,1
=

0.63

θC|1,1
− 0.14

1− θC|1,1
= 0,

which yields θ̂c|1,1 = 0.63/(0.63 + 0.14) = 0.82. �

There are many statistical models that involve latent variables i.e. variables that are not observed from the
data. By treating the latent variables as the missing variables, we can utilize the EM algorithm to learn
these models from data.

Example 12.3 (Gaussian Mixture Models (GMM)). In this model, we try to group data points {x1, x2, . . .}
into K clusters, each of which is distributed as Gaussian. In other words, we are trying to create a prob-
abilistic model of (xn, zn) where zn ∈ {1, 2, . . . ,K} is a latent variable. The graphical model is Z → X,
meaning that

p(x, z) = p(x|z)p(z)

where

p(x|z = k) = N(x|µk,Σk)

is a multivariate Gaussian with mean uk and covariance matrix Σk. The approach to compute the posterior
is a little bit different than the previous example. Let θt consist of all parameters of p(x|z) and p(z) after t
steps. Then the posterior of z can be computed as follows:

p(z|x,θt) =
p(x|z,θt)p(z|θt)∑K

k=1 p(x|k,θt)p(k|θt)
.

Then in the M-Step, we update the parameters using

θt+1 = arg max
θ

∑
x∈D

Ez∼p(z|x,θt) log p(x, z|θ)

= arg max
θ

K∑
k=1

∑
x∈D

p(k|x,θt) log p(x|k,θ)p(k|θ),

which can be solved using standard calculus. Alternatively, we could use tools from information theory which
we will discuss in the next section. �
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