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Example 3.1. Suppose that a company want to hire a recent college graduate. Before any major decision,
the company wants to measure the student’s intelligence based on their performance on an exam. So
they come up with a Bayesian network shown in Figure 3.1 which consists of five variables related to the
performance of a student on an exam: the difficult of the class D, the student’s intelligence I, their letter
grade G, SAT score S and the strength of the letter of recommendation L. For simplicity, we assume that
there are only three grades: A, B and C, represented by g1 g2 and g3, respectively, and the rest of the
variables are binary. For instance, a student can have either high intelligence i1 or low intelligence i0.

Figure 3.1: A Bayesian network of a student’s performance on an exam.

Factorization The factorization of the joint probability distribution follows the top-down approach:

P(I,D,G, S, L) = P(I)P(D)P(G|I,D)P(S|I)P(L|G).

For example, the probability that a smart student with a high SAT score and a strong letter of recommen-
dation got a B in an easy class is

P(i1, d0, g2, s1, l1) = 0.3× 0.6× 0.08× 0.8× 0.6 = 0.006912. (3.1)

Note that there is a higher chance that this student got an A in this class, as can be seen from replacing
0.08 by P(g1|i1, d0) = 0.9.

Independence As in the definition of a Bayesian network, the graph imposes the following conditional
independence:
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• I ⊥⊥ D.
It is reasonable to assume that I is independent of D but not other variables since they are all
descendants of I.

• D ⊥⊥ I, S.
Since S is not a descendant of D, it is also independent of D. Certainly, there should be no relationship
between the difficulty of the exam and the SAT score.

• S ⊥⊥ D,G,L|I.
Since the SAT score only depends only on the student’s intelligence and does not have any descendant,
it must be independent of any other variables.

• G ⊥⊥ S|I,D.
The strength of the letter of recommendation can be explained directly from the grade, so G is not
independent of L. On the other hand, given the student’s intelligence, the SAT score provides no
additional information about the student’s grade and vice versa.

• L ⊥⊥ I, S,D|G
Lastly, since the strength of the letter of recommendation can be fully explained by the letter grade,
we will not gain any additional information about L from any other variables.

�

3.1 Independencies from a Bayesian network

Note that dependency condition X 6⊥⊥ Y |Z in a little V graph X −→ Z ←− also holds when Z is an ancestor
of an observed variable. To see this, we look at the subgraph ?? from Example 3.1. The graph tells us that a
student who had a good recommendation letter was more likely to receive a good grade. As a consequence,
if the exam was difficult, there is a high chance that the student had high intelligence.

We can extend this and the other two structures to obtain independencies between any two sets of variables
X and Y given a group of observed variables O. First, we use dependencies in these graphs to characterize
a path that carries along the dependency of its source node, then introduce a notion of d-separated (d stands
for directed) between two sets of nodes that are not connected by an active path.

Definition 3.2. An undirected path in G is an active path given a set of observed variables O if for
any consecutive triplet of variables X,Y, Z, one of the following conditions holds:

• X −→ Y −→ Z and Y 6∈ O

• X ←− Y ←− Z and Y 6∈ O

• X ←− Y −→ Z and Y 6∈ O

• X −→ Y ←− Z and Y or any of its descendants is in O.

Two sets of variables X and Y are d-separated given O if they are not connected by an active path
give O.
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This leads us to the Bayes ball algorithm, whose term was coined from an action of rolling a ball until it is
blocked under a certain condition. We start at a node in X and mark all nodes in O and their ancestors.
Then we travel along a path until it is blocked by one of the two following conditions:

• The next node is in the middle of a little V structure which is not marked.

• The next node is in the middle of one of the other structures which is in O.
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Figure 3.2: In this graph, (X3, X4, X5, X6) is an active path.

Example 3.3. In the graph in Figure 3.2, we have the following

X3 ⊥⊥ X1|X2, X4

X3 6⊥⊥ X6|X2, X4

X3 6⊥⊥ X6|X8.

The second dependency holds because the path X3 −→ X4 −→ X5 −→ X6 is active, and the third depen-
dency follows similarly since X4, which is a middle node of a V structure, is an ancestor of X8. �

3.2 Representation of a Bayesian network

Since we have been trying to reconstruct a probability distribution using a graphical model, this raises a
concern of whether any distributions can be modeled using a Bayesian network. Unfortunately, this is not
the case, as the following example shows:

Example 3.4. Consider three random variables X,Y and Z where X,Y ∼ Ber(0.5) are independent and
Z = X xor Y i.e. Z = 1 if X = Y and Z = 0 otherwise. Then by symmetry we have

P(Z) = P(Z|X = 0)P(X = 0) + P(Z|X = 1)P(X = 1)

=
1

2
P(Z|X = 0) +

1

2
P(Z|X = 1)

= P(Z|X = 0),

which implies P(Z) = P(Z|X = 1), and so X ⊥⊥ Z. Similarly, Y ⊥⊥ Z. However, X,Y 6⊥⊥ Z since

P(Z) =
∑
x,y

P(Z|X = x, Y = y)P(X = x, Y = y)

= P(Z|X = 0, Y = 0)P(X = 0, Y = 0) + P(Z|X = 1, Y = 1)P(X = 1, Y = 1)

=
1

2
,
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and P(Z|X,Y ) is either 0 or 1. We can check and see that there is no Bayesian network that satisfies these
conditions at the same time. �

Thus we might want to relax the task of finding a perfect map for a distribution p to finding a map (i.e. a
graph) all of whose independencies hold in p. Suppose that there are n variables, then we can start with
the complete graph Kn. Then we might try to remove edges while preserving independencies in p until the
graph is “minimal”, meaning that further edge removal would result in independencies that do not hold in
p. This can be done precisely by first sorting the node in order:

Definition 3.5. A topological ordering of a DAG G is an order of nodes X1, X2, . . . , Xn such that for
any directed edge Xi −→ Xj we have i < j.

Note that a topological ordering always exists for any DAG. Then a minimal map can be made as follows:
for each step i = 1, 2, . . . , n, we do

• For any i, find the smallest Ui ⊆ {X1, . . . , Xi−1} such that Xi ⊥⊥ {X1, . . . , Xi−1} − Ui|Ui

• Let all nodes in Ui be the parents of Xi.
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