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Latent variable model

We consider the model

p(, z) = p(|z)p(z),

Observed  ∈ X .
Latent z = (z1, z2, . . . , zk) ∈ Rk.

For example,  is an image of a human face and z is a hidden
feature, such as happy vs sad or male vs female, etc.
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Learning generative models

Given a dataset D = {1, 2, . . . , n}. We are interested in the
following inference and learning tasks:

Learning the parameters θ of p.
Approximate posterior inference over z: given an image
, what is p(z|)?

We are also going to assume high-dimensional data i.e.
computing the posterior probability p(z | ) is intractable.
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What can we try?

So far we have learned about
EM algorithm to learn z from a given . However...

E step requires computing p(z | ) which is intractable.
M step requires optimization over entire dataset, which we
might not have enough memory for.

Variational Inference but z′ s depends on each other, so
we have to compute

Ez2,...,zk log p̃(z1, z2, . . . , zk).

MCMC does not scale well to large dataset, and MH
algorithm requires a proposal distribution q which might
be hard to choose.
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Autoencoder

Figure: An autoencoderVariational Autoencoder 5 / 17



Auto-encoding variational Bayes

Recall the Evidence Lower Bound (ELBO):

ELBO(pθ, qϕ) = Eqϕ(z|)
�

logpθ(, z) − logqϕ(z|)
�

In mean field variational inference, we assumed that

qϕ(z | ) = q1(z1)q2(z2) . . . qk(zk)

but this might be too simple.
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Auto-encoding variational Bayes

Instead, in AEVB, we assume that

qϕ(z|) = q(z|ϕ()),

where q is a base distribution and the parater ϕ is now a
function of .

For example, if q is a Gaussian then

qμ,σ2(z|) = q(z|μ(), σ2()).

We will optimize the ELBO over ϕ. This method is called

black-box variational inference
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Optimizing ELBO

We optimize ELBO with respect to ϕ and θ via gradient
descent. Thus we need to compute the gradient

∇θ,ϕELBO = ∇θ,ϕEqϕ(z)
�

logpθ(, z) − logqϕ(z)
�

.

We can push the gradient in side the expectation and apply
the chain rule

∇θ,ϕELBO = Eqϕ(z)ƒ (, z, θ, ϕ),

which is again difficult to compute because of expectation.
Thus we rely on Monte Carlo estimate

Eqϕ(z)ƒ (, z, θ, ϕ) ≈
1

N

N
∑

=1

F(, z, θ, ϕ).
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Optimizing ELBO

However, it was shown by Mnih & Gregor (2014) that the
variance of the Monte Carlo is high.

What this means is that, suppose that Eƒ = 1, you can sample
ƒ 100 times and get something like

0,0,0, . . . ,100

The expectation is correct, but you have to sample for a long
time to figure out that the true expectation is actually one.
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Stochastic gradient variational Bayes

ELBO can be reformulated as

ELBO = Eqϕ(z|)
�

logpθ(, z) − logqϕ(z|)
�

= Eqϕ(z|) [ logpθ(|z)] − KL(qϕ(z|)||p(z)).

This can be interpreted as autoencoder:
Encoder qϕ(z|) which turns  into a code z.
Decoder pθ(|z) which tries to reconstruct  from the
code z.

Our goal is to find qϕ(z|) that maximizes the expected
reconstruction and minimizes the KL-divergence at the same
time.
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Reparametrization trick

Expectation value = We still need Monte Carlo.
How can we reduce the variance in Monte Carlo?
Reparametrization trick Write z as

z = gϕ(ε, )

where

ε ∼ N(0,1).

∗We have to make sure that gϕ(ε, ) ∼ qϕ(z | ).
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Reparametrization trick

Example: Gaussian variable z ∼ qμ,σ2(z) = N(μ, σ2). We can
write

z = gμ,σ(ε) = μ + ε · σ,

where ε ∼ N (0,1).
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Reparametrization trick

We may now write the gradient of the expectation as

∇ϕEz∼qϕ(z|) [ƒ (, z)] = ∇ϕEε∼p(ε)
�

ƒ (, gϕ(ε, ))
�

= Eε∼p(ε)
�

∇ϕƒ (, gϕ(ε, ))
�

Expectation value = We can use Monte Carlo to sample
ε.
The variance is lower than the original formulation
(Rezende et al., 2014)
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Choosing p and q

As mentioned before, q takes the form of

qϕ(z|) = q(z|ϕ()),

and we will take ϕ to be a neural network, which is a
deterministic function of .
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Choosing p and q

For example, if the base distribution q is normal, then

q(z | ) = N (z; ~μ(), (~σ())2).

What we are missing in the ELBO is pθ(|z).
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Choosing p and q

We also model p using a neural network

p( | z) = N(; ~μ(z), (~σ(z))2)
p(z) = N(z; 0, ),

where ~μ(z) and ~σ(z) are neural networks of z.
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Summary

In summary, we want to maximize

ELBO = Eqϕ(z|) [ logpθ(|z)] − KL(qϕ(z|)||p(z))

using gradient descent on θ and ϕ
Initialize all parameters and neural networks.
Sample ε ∼ N(0,1) for Monte Carlo estimate in order to
compute the reconstruction term.
Update μ, σ, ~μ(z) and ~σ(z), which contains all parameters
of all neural network.
Repeat.
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