229351 | Statistical Learning for Data Science 1
Winter 2023
Time: M & Th 11.00am-13.00am at SCB4202
Instructor
- Donlapark Ponnoprat
Office: STB304
Midterm schedule: Link
Grading
- Lab 30%
- Midterm 35%. SUN JAN 12, 2025 8:00 - 11:00
- Final 35%. THU MAR 20, 2025 15:30 - 18:30
Additional readings
- [ISLR] Trevor Hastie, Robert Tibshirani, Daniela Witten and Gareth James, An Introduction to Statistical Learning: with Applications in R [book] [python code]
- [FPP] Rob J Hyndman and George Athanasopoulos, Forecasting: Principles and Practice [online book]
Lecture Notes
Date | Topic | Notes/HW | Labs | Readings |
---|---|---|---|---|
Nov 11 | Introduction | Lecture 1 | Lab 1 | ISLR 2.1.5 |
Nov 18 | Linear algebra |
Lecture 2 |
Lab 2 | visualizing matmul |
Nov 20 | Principal component analysis (PCA) | Lecture 3 | Lab 3-1 Lab 3-2 |
ISLR 10.2.1-10.2.2 LAML 3.3, 3.3.7 |
Dec 2 | Linear regression I | Lecture 4 | ISLR 3.1 | |
Dec 9 | Linear regression II |
Lecture 5 |
Lab 4 | ISLR 3.2 |
Dec 16 | Linear regression III | Lecture 6 | Lab 5 | ISLR 3.3 |
Dec 23 | Linear regression III (cont.) | Lab 6 | ||
Jan 20 | Time series I | Lecture 7 annotated | Lab 7 | ISLR 3.3 |
Jan 27 | Time series II | Lecture 8 | Lab 8-1 Lab 8-2 | FPP 6.1-6.3, 6.7, 6.8 |
Feb 3 | Time series III | Lecture 9 | Lab 9-1 Lab 9-2 | FPP 7.1-7.4, 7.6 |
Feb 10 | Logistic regression I | Lecture 10 | Lab 10 | ISLR 4.2, 4.3.1-4.3.3 |
Feb 29 | Model evaluation | Lecture 11 | ISLR 4.3.4-4.3.5, |