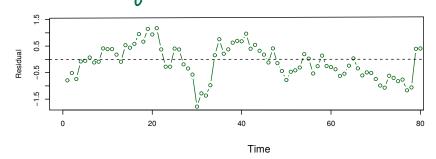
Time Series Analysis 1 DS351

Why can't we use linear regression

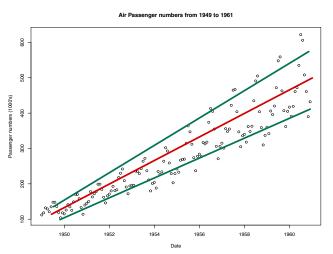
Simple model

y = pat pit + Et



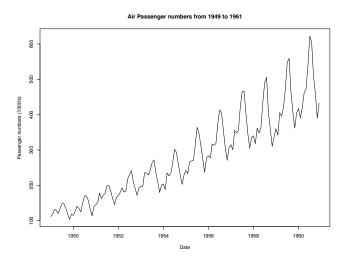
Error terms are correlated.

Why can't we use linear regression



Variance of the errors increases with time.

Why can't we use linear regression



Seasonality, which implies non-linearity!

Analyzing Time Series

Notations

Time series is often denoted by

Notations

Time series is often denoted by

$$\dots$$
 Y_{t-2} Y_{t-1} Y_{t} Y_{t+1} Y_{t+2} \dots time index

Lag is an amount of time passed.

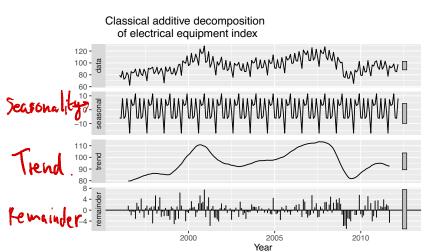
Example: lag 5 of
$$Y_t$$
 is Y_{t-5} .

Time series decomposition

Time series decomposition

Goal:

- Extract trend seasonality
- Visualize and improve understanding of time series



Classical decomposition

Two types of decomposition:

1. Additive decomposition

$$y_t = S_t + T_t + R_t,$$

where

- \triangleright S_t is the seasonal component.
- $ightharpoonup T_t$ is the trend component.
- $ightharpoonup R_t$ is the remainder component.

Classical decomposition

Two types of decomposition:

2. Multiplicative decomposition

$$y_t = S_t \times T_t \times R_t,$$

where

- \triangleright S_t is the seasonal component.
- $ightharpoonup T_t$ is the trend component.
- $ightharpoonup R_t$ is the remainder component.

$$y_t = S_t + T_t + R_t,$$

Step 1: Estimate the **Trend** \hat{T}_t .

Moving average is a method to estimate the trend.

Pick m, usually the seasonal period.

$$\widehat{T}_t = egin{cases} m\text{-MA} & \text{if } m \text{ is an odd number.} \\ 2 imes m\text{-MA} & \text{if } m \text{ is an even number.} \end{cases}$$

Moving averages

Moving average is a method to estimate the trend

Time series: $y_t: y_1, y_2, \dots, y_T$

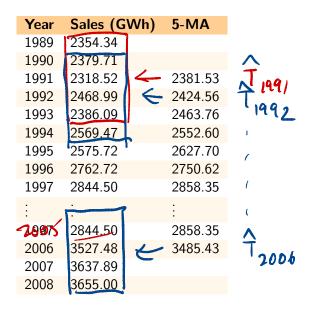
Moving average of order m of y_t is

rder
$$m$$
 of y_t is
$$\widehat{T}_t = \frac{1}{m} \sum_{i=-k}^k y_{t+i},$$

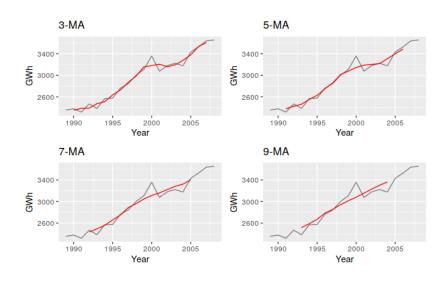
$$E_X: w = 5$$

where m = 2k + 1.

Example: electricity sold to customers in South Australia

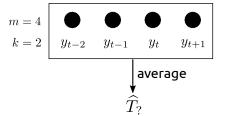


Example: moving average of different orders



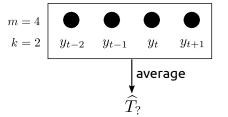
Moving average of even orders

For example, m = 4

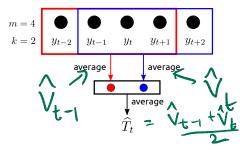


Moving average of even orders

For example, m = 4



Idea: use 2-MA after 4-MA



Australian quarterly beer production

m=4

Year	Quarter	Observation	4-MA	2×4-MA	
1992	Q1	443		_	
1992	Q2	410	451.25	K	^
1992	Q3	420	448.75	450 4	T19
1992	Q4	532	451.5	450.12	17
1993	Q1	433	449	450.25	
1993	Q2	421	444	446.5	
1993	Q3	410	448	446	
1993	Q4	512	438	443	
1994	Q1	449	441.25	439.62	
:	:	:	:	:	
1996	Q3	398	433.75	430.88	
1996	Q4	507	433.75	433.75	
1997	Q1				
1997	Q ₂	7.3			

$$\widehat{T}_t = \frac{1}{2} \left[\frac{1}{2} (y_{t-2} + y_t) \right]$$

$$\widehat{T}_t = \frac{1}{2} \left[\frac{1}{2} (y_{t-2} + y_t) \right]$$

$$\widehat{T}_{t} = \frac{1}{2} \left[\frac{1}{4} (y_{t-2} + y_{t-1} + y_{t} + y_{t+1}) + \frac{1}{4} (y_{t-1} + y_{t} + y_{t+1} + y_{t+2}) \right]$$

$$\hat{T}_t = \frac{1}{2} \left| \frac{1}{4} (y_{t-2} + y_{t-1}) \right|$$

$$\widehat{T}_t = \frac{1}{2} \left| \frac{1}{4} (y_{t-2} + y_{t-1}) \right|$$

The 24m-MA

$$\widehat{T}_t = \frac{1}{2} \left[\frac{1}{2} (v_{t-2} + v_{t-1}) \right]$$

$$a + V_{i}$$

 $= \frac{1}{8}y_{t-2} + \frac{1}{4}y_{t-1} + \frac{1}{4}y_t + \frac{1}{4}y_{t+1} + \frac{1}{8}y_{t+2}.$

= 1 yt- m + hyt-m+1 t. + hyt+m+ 2m tom

The 2×4 -MA of y_t is

$2 \times m$ -MA

The 2×4 -MA of y_t is

$$\widehat{T}_{t} = \frac{1}{2} \left[\frac{1}{4} (y_{t-2} + y_{t-1} + y_{t} + y_{t+1}) + \frac{1}{4} (y_{t-1} + y_{t} + y_{t+1} + y_{t+2}) \right]$$

$$= \frac{1}{8} y_{t-2} + \frac{1}{4} y_{t-1} + \frac{1}{4} y_{t} + \frac{1}{4} y_{t+1} + \frac{1}{8} y_{t+2}.$$

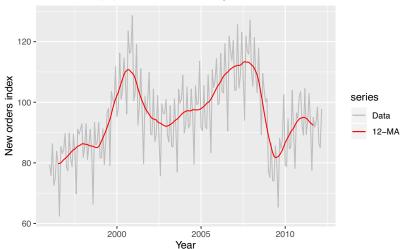
In general, The $2 \times m$ -MA of y_t is

$$\widehat{T}_t = \frac{1}{2m} y_{t-k} + \ldots + \frac{1}{m} y_{t-1} + \frac{1}{m} y_t + \frac{1}{m} y_{t+1} + \ldots + \frac{1}{2m} y_{t+k},$$

where m = 2k.

Example: monthly data

Electrical equipment manufacturing (Euro area)



 2×4 -MA for quarterly beer production, 7-MA for daily traffic data etc

Step 2: Calculate the detrended series
$$y_t - \widehat{T}_t$$

$$y_t - \widehat{T}_t$$

Additive decomposition

Decompose detrended series: 4-7.

Step 3: Compute the mean of $y_t - \widehat{T}_t$ for each seasonal unit.

For example, for monthly data, we compute S_1 = the mean of all values in January S_2 = the mean of all values in February and so on...

Additive decomposition

Step 3: Compute the mean of $y_t - \widehat{T}_t$ for each seasonal unit. For example, for monthly data, we compute

$$S_1$$
 = the mean of all values in January S_2 = the mean of all values in February and so on...

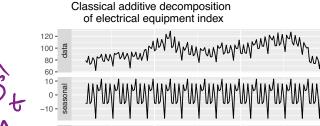
Then, these seasonal values are adjusted to have zero mean.

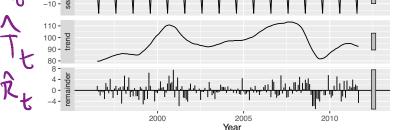
Final value
$$\rightarrow$$
 $\hat{S}_1 = S_1 - \overline{S}_1 = S_1 - S_1 + S_2 + S_1 + S_2 + S_2 + S_3 + S_4 +$

Additive decomposition

Step 4: The remainder component is

$$\widehat{R}_t = y_t - \widehat{T}_t - \widehat{S}_t.$$





decomposition
$$Y_t = S_t \times T_t \times R_t \qquad \text{Only}$$

$$S_t \times T_t \times R_t \qquad \text{Used for}$$

$$S_t \times T_t \times R_t \qquad \text{Posifive data}$$

► Step 1: Pick m, usually the seasonal period.

$$\widehat{T}_t = \begin{cases} m\text{-MA} & \text{if } m \text{ is an odd number.} \\ 2 \times m\text{-MA} & \text{if } m \text{ is an even number.} \end{cases}$$

▶ Step 1: Pick m, usually the seasonal period.

$$\widehat{T}_t = \begin{cases} m\text{-MA} & \text{if } m \text{ is an odd number.} \\ 2 \times m\text{-MA} & \text{if } m \text{ is an even number.} \end{cases}$$

Step 2: Calculate the detrended series

$$\frac{y_t}{\widehat{T}_t}$$

▶ Step 3: Compute the mean of y_t/\widehat{T}_t for each seasonal unit. For example, for monthly data, we compute

 $S_1 =$ the mean of all values in January $S_2 =$ the mean of all values in February and so on...

▶ Step 3: Compute the mean of y_t/\widehat{T}_t for each seasonal unit. For example, for monthly data, we compute

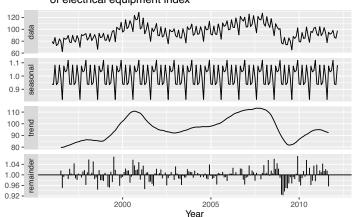
$$S_1=$$
 the mean of all values in January $S_2=$ the mean of all values in February and so on... $S_1+S_2+...+S_{12}=$ Then, these seasonal values are adjusted to have sum of 1.
$$\widehat{S}_1=S_1/\overline{S}$$

$$\widehat{S}_2=S_2/\overline{S}$$
 and so on...
$$S_1+S_2+...+S_{12}=S_2$$

where
$$\overline{S} = \sum_{i=1}^{12} S_i$$
.

Step 4: The remainder component is $\widehat{R}_t = \frac{y_t}{\widehat{T}_t \widehat{S}_t}.$

Classical multiplicative decomposition of electrical equipment index



Additive: Multiplicative?

Strength of trend (Wang, Smith & Hyndman, 2006)

Back to additive decomposition:

$$y_t = T_t + S_t + R_t.$$

Observation: for a time series with strong trend,

$$\frac{\operatorname{Var}(R_t)}{\operatorname{Var}(T_t + R_t)}$$
 should be small.

Strength of trend (Wang, Smith & Hyndman, 2006)

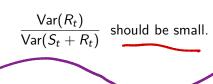
Back to additive decomposition:

$$y_t = T_t + S_t + R_t.$$

Observation: for a time series with strong trend,

$$\frac{\mathsf{Var}(R_t)}{\mathsf{Var}(T_t + R_t)} \text{ should be small.}$$

for a time series with strong seasonality,



Strength of trend (Wang, Smith & Hyndman, 2006)

So we define the strength of trend as
$$Var(T_t + R_t)$$

$$F_T = \max \left(0, 1 - \frac{\text{Var}(R_t)}{\text{Var}(T_t + R_t)}\right)$$

$$Var(R_t)$$

$$Var(R_t)$$

$$Var(R_t)$$

$$Var(T_t + R_t)$$

$$F_S = \max \left(0, 1 - \frac{\text{Var}(R_t)}{\text{Var}(S_t + R_t)}\right) \cdot \text{Var}(T_t + R_t)$$
Higher value = Stronger effect

This is useful when we have a collection of time series and we want to find the one with the most trend or seasonality.

Forecasting with decomposition

We can make forecast from the decomposition date

$$y_t = \widehat{S}_t + (\widehat{T}_t + \widehat{R}_t),$$

where we can use time series model to forecast the seasonally adjusted component $\widehat{A}_t = \widehat{T}_t + \widehat{R}_t$ and then add back the seasonal component S_t .



Forecasting with decomposition

We can make forecast from the decomposition

$$y_t = \widehat{S}_t + (\widehat{T}_t + \widehat{R}_t),$$

where we can use time series model to forecast the seasonally adjusted component $\widehat{A}_t = \widehat{T}_t + \widehat{R}_t$ and then add back the seasonal component S_t .

