Fall 2022

Lab 3: due July 16

Instructor: Donlapark Ponnoprat

Task 1: Tabular data

Upload the Boston housing dataset housing.tgz to Google Colab. File with one of *.tar, *.tar.xz, *.tar.gz, *.tgz, *.tar.bz2, *.tbz2 is a Linux archive file, so you need to extract the file using one of the following lines:

!tar -xvf yourfile.tar or yourfile.tar.xz or yourfile.txz
!tar -xzvf yourfile.tar.gz or yourfile.tgz
!tar -xjvf yourfile.tar.bz2 or yourfile.tbz2

With this dataset, we are going to train a linear regression model with

 $y = median_house_value and X = the other features.$

But first, we need to do some data cleaning/preprocessing.

- 1. Encode the categorical variable with an appropriate encoder (either Ordinal Encoder or OneHotEncoder).
- 2. Split the data into X and y.
- 3. Split the data into training set and test set (choose your own proportions).
- 4. Impute and normalize the data. Make sure that there is no "data leakage" from the test set to the training set.
- 5. Train the linear regression on the training set, and report the **coefficient of determination** (R^2) on the test set. To learn more about the scikit-learn's LinearRegression class, see the Documentation.

Task 2: Time series data

Upload the Chiang Mai weather dataset chiang_mai_1998-2019.csv to Google Colab. I recommend to read the dataset as a numpy array, not a pandas dataframe, unless you are extremely good at dataframe manipulation.

With this dataset, we are going to train a linear regression model with

y = next day Precipitation and X = all features in previous t days, including today,

where t = 2, 3, ..., 10. First, we need to preprocess the data

- 1. Remove the Date column.
- 2. Split the data into training set and test set (choose your own proportions).
- 3. Normalize the data. Make sure that there is no "data leakage" from the test set and validation set to the training set.
- 4. (sliding window) Define a function that takes one of the sets and t and outputs two numpy arrays in the following way: for t = 2, the set

H_1	T_1	P_1	Pre_1
H_2	T_2	P_2	Pre_2
H_3	T_3	P_3	Pre_3
H_4	T_4	P_4	Pre_4
H_5	T_5	P_5	Pre_5
H_6	T_6	P_6	Pre_6

is transformed into:

Х							У	
H_1	T_1	P_1	Pre_1	H_2	T_2	P_2	Pre_2	Pre_3
H_2	T_2	P_2	Pre_2	H_3	T_3	P_3	Pre_3	Pre_4
H_3	T_3	P_3	Pre_3	H_4	T_4	P_4	Pre_4	Pre_5
H_4	T_4	P_4	Pre_4	H_5	T_5	P_5	Pre_5	Pre_6

See https://www.cienciadedatos.net/documentos/py27-time-series-forecasting-python-scikitlearn. html for nice visualizations of the sliding window technique.

For $t = 2, 3, \ldots, 10$, perform step 5–6 below:

- 5. Apply the function in 3. (which also takes t as an input) to the training set and obtain X_{train}, y_{trian} . Apply it to the test set and obtain X_{test}, y_{test} .
- 6. Train the linear regression model on X_{train}, y_{trian} . With the trained model, make predictions on X_{test} and compute the RMSE against y_{test} .

Finally, we plot our results.

7. Plot the RMSE for t = 2, 3, ..., 10. What is the best value of t?