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What is Statistical Learning? Two Perspectives

In this course, we’ll view “learning from data” through two main lenses:

Perspective 1: Learning Distributions

Finding the underlying probability that
generates the data.

• How is data generated? P(X)

• How are outputs related to inputs?
P(Y |X)

Perspective 2: Learning Functions

Finding a function f (X) of features X.

• Prediction: f (X) = Y

• Clustering: f (X) = cluster

• Halfspaces: f (X) > 0 or f (X) < 0

Our Overarching Goal

To use data to build models that help us understand the world, make predictions, or make
informed decisions.
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Perspective 1: Learning Probability Distributions

The Idea: Model the “data
generating process.”

• Learn P(X).
• What does ’typical’ data

look like?
• Density estimation,

quantiles, modes, etc.

• Learn P(Y |X).
• Given inputs X, what’s the

probability of output Y ?
• Probabilistic

classification/regression.

(a) Raw Data Points Xi

P
(X

)

(b) Estimated PDF P(X )
Estimate
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Perspective 2: Learning a Predictive Function f (X)

The Idea: Find a mapping from
inputs to outputs.

• Goal: Create a function f (X)
that produces predictions Ŷ .

• Criterion: Minimize a loss
function L(Ytrue , Ŷ ) that
penalizes errors.

• Ytrue : The actual observed
value.

• E.g., for classification:
L = 1Ytrue ̸=Ŷ (0/1 loss)

• E.g., for regression:
L = (Ytrue − Ŷ )2 (squared
error)

Input X Model f (·) Pred. Ŷ

True Y

Error!Loss L(Y , Ŷ )
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Learning Probability Distributions:

Parametric Estimation

Concept

• Assumption-based: We assume the
data comes from a specific family of
probability distributions (e.g.,
Gaussian/Normal, Bernoulli, Poisson).

• This family is characterized by a fixed
number of parameters.

• Learning ≡ Estimating these
parameters from the data.

Example

Imagine a coin. We assume it has a fixed
’probability of heads’ (p). Learning p (e.g.,
by flipping it 100 times) is parametric
estimation.
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Example: Learning the Mean (Parametric)

• Imagine we have data X1,X2, . . . ,Xn and we assume it comes from a Normal
distribution N (µ, σ2).

• Our goal is to ”learn” the true mean µ and variance σ2.

• The simplest and most common estimate for the mean µ is the sample mean:

µ̂ = X̄ =
1

n

n∑
i=1

Xi

x

f
(x
)

True PDFL: N (µ, σ2)

Sample Values

Sampled Data
Sampling

X̄ estimates µ
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Nonparametric Estimation

Concept

• Data-driven: Few/no strong
assumptions about the underlying
distribution.

• Learning ≡ Directly inferring
distributional properties (median,
quantiles etc.) from data without a
fixed parametric form.

Example

Instead of assuming data is Normal, we
might estimate its Probability Density
Function (PDF) or Cumulative Distribution
Function (CDF) directly from observations.
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Normal Distribution: PDF and CDF
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Example: Cumulative Distribution Function (CDF)

What is a CDF?
• F (x) = P(X ≤ x): Probability X is less
than or equal to x .

• Non-decreasing, from 0 to 1.

• Completely characterizes the probability
distribution.

Example

Standard normal: F (0) = 0.5 (50% chance
value ≤ 0).

How can we estimate the CDF?
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Estimating CDF: The Empirical Distribution Function (EDF)

How do we estimate F (x) without assuming a distribution?

Use the Empirical Distribution Function (EDF), F̂n(x).

• Given i.i.d. observations X1, . . . ,Xn:

F̂n(x) =
Number of Xi ≤ x

n
=

1

n

n∑
i=1

1[Xi ≤ x ]

• 1[Xi ≤ x ] is an indicator function (1 if Xi ≤ x , 0 otherwise).

• The EDF is a step function, jumping at each data point.
x

F̂n(x)

X1 X2 X3

1
3

2
3

1

EDF with n = 3

Does EDF accurately estimate the CDF?

As n → ∞, F̂n(x) → F (x) (Glivenko-Cantelli, 1933).
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Python Interactive: EDF Calculation

Link to Google Colab
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https://colab.research.google.com/github/donlap/ds352-labs/blob/main/Lab01_CDF_estimate.ipynb


Generative Models

Focus: The Data Itself (Perspective 1)

• Aim to learn joint distribution
P(X,Y ) or data distribution P(X).

• Understand how data is generated.

• Can generate new, synthetic data.

Example

• Generating realistic images.

• Creating new music.

• Producing synthetic text.
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Advanced Generative Models: Learning a Transformation

For complex data (e.g., images), directly modeling P(X) is hard. Modern approach:

The Core Idea
• Assume simple distribution for latent variable Z (e.g., N(0, I)).

• Learn a complex function (generator) G : Z → X.

• Maps simple latent samples to realistic data samples.

Z ∼ N(0, I) Generator G (·)
Sample Transform

Simple latent (noise)

Learned network

Complex data (image)

Figure: Generative models by learning a transformation from random noises.
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Summary: Diverse Learning Approaches

We’ve seen ”learning” as:

• Learning Distributions P(X),P(Y |X)
• Parametric (assume model family)
• Nonparametric (data-driven, e.g.,

EDF)

• Learning Functions f (X) → Ŷ
• Minimize loss/error
• Classification, Regression

• Generative Models: Learn P(X) or
P(X,Y ) to understand data generation
and create new samples.

• Advanced ones learn transformations
from simple latent spaces.

Key Takeaway

“Learning” in data science is diverse, from parameter estimation to complex generative
processes, each with its strengths and suitable applications. Our learning targets often
guide our choice of methods.
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What’s Next?

• This was an introduction to “learning” concepts.
• In this course, we will explore many more advanced techniques:

• Classification algorithms (SVMs, Trees, Boosting), linking them to P(Y |X) and
Y = f (X).

• Clustering algorithm, k-means and hierarchical clustering.
• Deep Learning Models, CNNs, RNNs, Transformers.
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Question?
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