Naive Bayes classifier



Introduction

« Review of Conditional Probability

« Naive Bayes Classifier



Example Dataset

Consider a dataset of weather conditions and whether to play tennis

Outlook | Temperature | Humidity | Wind | PlayTennis
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rainy Mild High Weak Yes
Rainy Cool Normal Weak Yes
Rainy Cool Normal | Strong No

Overcast Cool Normal | Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rainy Mild Normal Weak Yes
Sunny Mild Normal | Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes




Conditional Probability

- Definition: P(A|B) = Pz(jég?)




Conditional Probability

- Definition: P(A|B) = Pz(jég?)

- Example: Probability of playing tennis given that it’s
sunny
P(PlayTennis=Yes|Outlook=Sunny)



Calculating Conditional
Probability

P(PlayTennis=Yes|Outlook=Sunny)

. Total instances: 13
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Calculating Conditional
Probability

P(PlayTennis=Yes|Outlook=Sunny)

Total instances: 13

Instances where Outlook=Sunny: 5

Instances where PlayTennis=Yes and Outlook=Sunny: 2

P(PlayTennis=Yes|Outlook=Sunny) =



Naive Bayes Classifier

Steps:
1. Estimate conditional probabilities:

P(Y = YeS|X1, Xo, .. )
P(Y = No’Xl,XQ, .. )



Naive Bayes Classifier

Steps:
1. Estimate conditional probabilities:

P(Y = YeS|X1, Xo, .. )
P(Y = No’Xl,XQ, .. )

2. Make prediction:

Y = Yes if P(Y = Yes|X}, Xs,...) > P(Y = No| X}, Xo, . ..

Y = No if P(Y = Yes| X1, X,,...) < P(Y =No|X}, Xa, ...



Naive Bayes Classifier

« Example:
. Outlook = Sunny, Temperature = Cool, Humidity = High, Wind
= Strong
. What is the probability that PlayTennis = Yes?



Naive Bayes Classifier

« Example:
. Outlook = Sunny, Temperature = Cool, Humidity = High, Wind
= Strong

. What is the probability that PlayTennis = Yes?

« Counting from the table yields
P(PlayTennis = Yes|Sunny, Cool, High, Strong) = 0

But this is probably not accurate!



Naive Bayes Classifier

- Instead, we use Bayes’ Theorem:

P(X), Xy,...[Y)P(Y
P(Y|X1, Xs,...) = (X1, Xy, [Y)PIY)

P(X1, Xs,..)



Naive Bayes Classifier

- Instead, we use Bayes’ Theorem:

P(X1,Xa,...|[Y)P(Y)

P(Y|X1, Xs,...) = BT )

« ... and assumes conditional independence between
predictors

P(X1,Xa,...[Y) = P(X1|Y)P(X,]Y) ...

« Now P(X;]Y), P(X5]Y),... can be accurately estimated
with only a few instances!



Prediction

We will make prediction Y = Yes if
P(Y =Yes| X1, Xy, ...) > P(Y =No| X1, Xs,...),

and vice versa



Prediction
We will make prediction Y = Yes if
P(Y =Yes| X1, Xy, ...) > P(Y =No| X1, Xs,...),

and vice versa

P(X1,Xs,...|Y = Yes)P(Y = Y
P(Y = Yes|Xi, X, .. ) — LK1 X2 [V = Yes) P(Y = Yes)

P(X1,Xo,...)

P(X1,Xs,...|Y =No)P(Y = No)
P(X1,Xs,...)

P(Y = NO‘Xl’XQ, .. ) =



Prediction

To compare these two, we do not need to compute
P(X1, Xs,...)

We predict Y = Yes if

P(X1, Xo,...|V = Yes) x P(Y = Yes)
>P(X1,X2,... |Y = NO) X P(Y = NO)



Prediction

To compare these two, we do not need to compute
P(X1,Xs,...)

With conditional independence, we predict Y = Yes if

P(X;|Y =Yes) x P(Xs|Y =Yes) x...x P(Y = Yes)
>P(X;|Y =No) x P(X3]Y =No) x...x P(Y =No)

and vice versa



Example Dataset

Dataset of weather conditions and whether to play tennis

Outlook | Temperature | Humidity | Wind | PlayTennis
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rainy Mild High Weak Yes
Rainy Cool Normal Weak Yes
Rainy Cool Normal | Strong No

Overcast Cool Normal | Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rainy Mild Normal Weak Yes
Sunny Mild Normal | Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes




Predicting with Naive Bayes

« Example: Predict PlayTennis given {Outlook=Sunny,
Temperature=Cool, Humidity=High, Wind=Strong}



Predicting with Naive Bayes
« Example: Predict PlayTennis given {Outlook=Sunny,
Temperature=Cool, Humidity=High, Wind=Strong}

« Calculate posterior probabilities for both classes (Yes and
No)

Yes|data) = P(Outlook=Sunny|Yes) x
P Temperature=Cool|Yes) x ... x P(Yes)

P
(
(No|data) = P(Outlook=Sunny|No) x
(Temperature=Cool|No) x ... x P(No)

T T



Calculating Priors and
Likelihoods

« Priors:
. P(Yes) = &
- P(No) =
. Likelihoods:

. P(Outlook=Sunny|Yes) = 2
. P(Outlook=Sunny|No) = 2
. And similarly for other features



Final Prediction

« Compare P(Yes|data) and P(No|data)
« Predict the class with the higher posterior probability

« In this example:
P(Yes|data) < P(No|data) = PlayTennis = No



Continuous Features

« We can also handle continuous features with Naive Bayes

« Assume the continuous values follow a Gaussian (normal)
distribution

. Use Gaussian likelihood for these features



Example Dataset

A dataset of student performance.

Study Hours | Previous Grade | Pass
1.5 C No
3.0 B Yes
2.0 C No
4.0 A Yes
2.5 B No
3.5 A Yes
3.0 C Yes
5.0 A Yes
1.0 C No
4.5 B Yes




Gaussian Naive Bayes

« For a continuous feature z, likelihood is given by:

P(zly) = ! exp (_M)

2
2mo? 20,

H

where 1, and o] are the mean and variance of the feature
for class y



Example: Continuous Feature

« Consider Study Hours as a continuous feature

. Calculate mean () and variance (¢0?) for each class (Pass
= Yes, No)

> Study Hours for Yes

NYes
) >~ (Study Hours for Yes — fiyes)?
OYes —
NYes —1

Hyes =




Calculating Parameters

. For Pass = Yes:
— 3.04+4.0+3.5+5.0+3.0+4.5 — 367

© HYes 6
2 (3.0-3.67)2+(4.0-3.67)%2+...
¢ Oeg = s =0.73

. For Pass = No:
_ 1.542.04+2.5+1.0 — 1‘75

° ,uNO - 4
) UE‘O _ (1.5—1.75)2+(32.0—1.75)2+... — 058



Prediction with Continuous
Feature

« Example: Predict Pass given {Study Hours=3.2, Previous
Grade=B}

« Use Gaussian likelihood for Study Hours

. Calculate P(Study Hours = 3.2|Yes) and
P(Study Hours = 3.2|No)



Posterior Probability with
Continuous Feature

« Compute the posterior probabilities:

P(Yes|data)

~ P(Study Hours = 3.2|Yes) x P(Previous Grade = B|Yes) x P(Yes)
P(No|data)

~ P(Study Hours = 3.2|No) x P(Previous Grade = B|No) x P(No)

« Compare and predict the class with higher posterior
probability



Computing Likelihoods

[Yes = 3.67, a%es = 0.73, uno = 1.75, J,%,O = (.58

P(Study Hours = 3.2|Yes) =

P(Study Hours = 3.2|No) =



Computing Likelihoods

P(Previous Grade = B|Yes) =

P(Previous Grade = B|No) =



Positive or negative movie
review?

« This movie is disappointing.

| love everything about this movie.

| would love to have that two hours of my life back.

This is one of my favorite if not favorite films.

| have seen so many bad low budget movies lately, but |
love this one.



Naive Bayes for text

Plwy,wa, ..., wa|y) P(y) = Plwi|y) P(waly) . .. Pwa|y)P(y)

where i )
count(w;, y
P(wyly) =

(wily) Y wev count(w, y)

F ) ( )

~ count(Documents)




Example
« This movie is disappointing.

| love everything about this movie.

| would love to have that two hours of my life back.

This is one of my favorite if not favorite films.

| have seen so many bad low budget movies lately, but |
love this one.

P(Positive) =



Example
« This movie is disappointing.

| love everything about this movie.

| would love to have that two hours of my life back.

This is one of my favorite if not favorite films.

| have seen so many bad low budget movies lately, but |
love this one.

P(favorite|Positive) =



Example

P(y = 1|l love, love this movie.)



Example

P(y = 0|l love, love this movie.)



Laplace smoothing

- Want to predict the class of “| slept through the entire
movie” but the word slept is not in the training set

count(slept, y)

P(slept|y) =
(sleptly) S ey count(w, y)

= 0.




Laplace smoothing

- Want to predict the class of “| slept through the entire
movie” but the word slept is not in the training set

count(slept, y)

P(slept|y) =
(sleptly) S ey count(w, y)

:0.

« There is no best y in this case.

P(y|slept,...) = P(slept|y) x ... x P(y) =0



Laplace smoothing

Fix o > 0.
count(w;,y) + a

P(wily) = Zwev(count(w,y) + «)

count(w;,y) + a

Y wev count(w, y) + o|Vocab|



Laplace smoothing

Fix a > 0.
count(w;,y) + «

Y wey (count(w, y) + a)

Pwily) =

B count(w;, y) + «
Y wey count(w, y) + a|Vocab|

For example, if we choose o = 1,
1
Y wev count(w, y) + |Vocab)

P(slept|y) =

£ 0.



Learning Naive Bayes

« From the training corpus, extract the Vocabulary.

« For each class y, calculate P(y)
. Count number of documents in class y.

P(y) __ _ countdoc(Y=y)

count(Documents)

« For each word w; and class y
. Merge all documents in class y
. n; < # of occurrence of each word in class y
n;+o

' P<wz|y) - > ni+a|Vocab)
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