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Introduction

• Review of Conditional Probability

• Naïve Bayes Classifier



Example Dataset
Consider a dataset of weather conditions and whether to play tennis

Outlook Temperature Humidity Wind PlayTennis
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rainy Mild High Weak Yes
Rainy Cool Normal Weak Yes
Rainy Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rainy Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes

Weather Conditions and PlayTennis Dataset



Conditional Probability
• Definition: P (A|B) = P (A∩B)

P (B)

• Example: Probability of playing tennis given that it’s
sunny

P (PlayTennis=Yes|Outlook=Sunny)
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Calculating Conditional
Probability

P (PlayTennis=Yes|Outlook=Sunny)

• Total instances: 13

• Instances where Outlook=Sunny: 5

• Instances where PlayTennis=Yes and Outlook=Sunny: 2

• P (PlayTennis=Yes|Outlook=Sunny) =
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Naïve Bayes Classifier
Steps:
1. Estimate conditional probabilities:

P (Y = Yes|X1, X2, . . .)

P (Y = No|X1, X2, . . .)

2. Make prediction:

Ŷ = Yes if P (Y = Yes|X1, X2, . . .) ≥ P (Y = No|X1, X2, . . .)

Ŷ = No if P (Y = Yes|X1, X2, . . .) < P (Y = No|X1, X2, . . .)
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Naïve Bayes Classifier
• Example:

• Outlook = Sunny, Temperature = Cool, Humidity = High, Wind
= Strong

• What is the probability that PlayTennis = Yes?

• Counting from the table yields

P (PlayTennis = Yes|Sunny, Cool, High, Strong) = 0

But this is probably not accurate!
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Naïve Bayes Classifier
• Instead, we use Bayes’ Theorem:

P (Y |X1, X2, . . .) =
P (X1, X2, . . . |Y )P (Y )

P (X1, X2, . . .)

• . . . and assumes conditional independence between
predictors

P (X1, X2, . . . |Y ) = P (X1|Y )P (X2|Y ) . . .

• Now P (X1|Y ), P (X2|Y ), . . . can be accurately estimated
with only a few instances!
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Prediction
We will make prediction Ŷ = Yes if

P (Y = Yes|X1, X2, . . .) > P (Y = No|X1, X2, . . .),

and vice versa

P (Y = Yes|X1, X2, . . .) =
P (X1, X2, . . . |Y = Yes)P (Y = Yes)

P (X1, X2, . . .)

P (Y = No|X1, X2, . . .) =
P (X1, X2, . . . |Y = No)P (Y = No)

P (X1, X2, . . .)
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Prediction

To compare these two, we do not need to compute
P (X1, X2, . . .)

We predict Ŷ = Yes if

P (X1, X2, . . . |Y = Yes)× P (Y = Yes)
>P (X1, X2, . . . |Y = No)× P (Y = No)



Prediction
To compare these two, we do not need to compute
P (X1, X2, . . .)

With conditional independence, we predict Ŷ = Yes if
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and vice versa



Example Dataset
Dataset of weather conditions and whether to play tennis
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Predicting with Naïve Bayes
• Example: Predict PlayTennis given {Outlook=Sunny,
Temperature=Cool, Humidity=High, Wind=Strong}

• Calculate posterior probabilities for both classes (Yes and
No)

• P (Yes|data) = P (Outlook=Sunny|Yes)×
P (Temperature=Cool|Yes)× . . .× P (Yes)

• P (No|data) = P (Outlook=Sunny|No)×
P (Temperature=Cool|No)× . . .× P (No)
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Calculating Priors and
Likelihoods

• Priors:
• P (Yes) = 9

13

• P (No) = 5
13

• Likelihoods:
• P (Outlook=Sunny|Yes) = 2

9

• P (Outlook=Sunny|No) = 3
4

• And similarly for other features



Final Prediction

• Compare P (Yes|data) and P (No|data)

• Predict the class with the higher posterior probability

• In this example:
P (Yes|data) < P (No|data)⇒ PlayTennis = No



Continuous Features

• We can also handle continuous features with Naïve Bayes

• Assume the continuous values follow a Gaussian (normal)
distribution

• Use Gaussian likelihood for these features



Example Dataset
A dataset of student performance.

Study Hours Previous Grade Pass
1.5 C No
3.0 B Yes
2.0 C No
4.0 A Yes
2.5 B No
3.5 A Yes
3.0 C Yes
5.0 A Yes
1.0 C No
4.5 B Yes



Gaussian Naïve Bayes

• For a continuous feature x, likelihood is given by:

P (x|y) = 1√
2πσ2

y

exp
(
−(x− µy)

2

2σ2
y

)

where µy and σ2
y are the mean and variance of the feature

for class y



Example: Continuous Feature
• Consider Study Hours as a continuous feature

• Calculate mean (µ) and variance (σ2) for each class (Pass
= Yes, No)

µYes =

∑
Study Hours for Yes

NYes

σ2
Yes =

∑
(Study Hours for Yes− µYes)

2

NYes − 1



Calculating Parameters

• For Pass = Yes:
• µYes =

3.0+4.0+3.5+5.0+3.0+4.5
6

= 3.67

• σ2
Yes =

(3.0−3.67)2+(4.0−3.67)2+...
5

= 0.73

• For Pass = No:
• µNo =

1.5+2.0+2.5+1.0
4

= 1.75

• σ2
No =

(1.5−1.75)2+(2.0−1.75)2+...
3

= 0.58



Prediction with Continuous
Feature

• Example: Predict Pass given {Study Hours=3.2, Previous
Grade=B}

• Use Gaussian likelihood for Study Hours

• Calculate P (Study Hours = 3.2|Yes) and
P (Study Hours = 3.2|No)



Posterior Probability with
Continuous Feature

• Compute the posterior probabilities:

P (Yes|data)
≈ P (Study Hours = 3.2|Yes)× P (Previous Grade = B|Yes)× P (Yes)

P (No|data)
≈ P (Study Hours = 3.2|No)× P (Previous Grade = B|No)× P (No)

• Compare and predict the class with higher posterior
probability



Computing Likelihoods
µYes = 3.67, σ2

Yes = 0.73, µNo = 1.75, σ2
No = 0.58

P (Study Hours = 3.2|Yes) =

P (Study Hours = 3.2|No) =



Computing Likelihoods

P (Previous Grade = B|Yes) =

P (Previous Grade = B|No) =



Positive or negative movie
review?

• This movie is disappointing.

• I love everything about this movie.

• I would love to have that two hours of my life back.

• This is one of my favorite if not favorite films.

• I have seen so many bad low budget movies lately, but I
love this one.



Naïve Bayes for text

P (w1, w2, . . . , wn|y)P (y) = P (w1|y)P (w2|y) . . . P (wn|y)P (y)

where
P (wi|y) =

count(wi, y)∑
w∈V count(w, y)

and
P (y) =

countdoc(Y = y)

count(Documents)



Example
• This movie is disappointing.

• I love everything about this movie.

• I would love to have that two hours of my life back.

• This is one of my favorite if not favorite films.

• I have seen so many bad low budget movies lately, but I
love this one.

P (Positive) =



Example
• This movie is disappointing.

• I love everything about this movie.

• I would love to have that two hours of my life back.

• This is one of my favorite if not favorite films.

• I have seen so many bad low budget movies lately, but I
love this one.
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Example

P (y = 1|I love, love this movie.)



Example

P (y = 0|I love, love this movie.)



Laplace smoothing
• Want to predict the class of “I slept through the entire
movie” but the word slept is not in the training set

P (slept|y) = count(slept, y)∑
w∈V count(w, y)

= 0.

• There is no best y in this case.

P (y|slept, . . .) = P (slept|y)× . . .× P (y) = 0
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Laplace smoothing
Fix α > 0.

P (wi|y) =
count(wi, y) + α∑

w∈V (count(w, y) + α)

=
count(wi, y) + α∑

w∈V count(w, y) + α|V ocab|

For example, if we choose α = 1,

P (slept|y) = 1∑
w∈V count(w, y) + |V ocab|

̸= 0.
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Learning Naïve Bayes
• From the training corpus, extract the Vocabulary.
• For each class y, calculate P (y)

• Count number of documents in class y.

• P (y) = countdoc(Y=y)
count(Documents)

• For each word wi and class y
• Merge all documents in class y

• ni ← # of occurrence of each word in class y

• P (wi|y) = ni+α∑
i ni+α|V ocab|
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