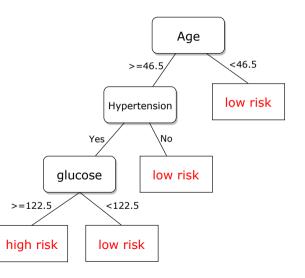
Decision Trees

Decision trees

Framingham dataset: high risk or low risk of heart attack?

- create subsequent rules to split the data by the values of features
- can split at numerical or categorical features



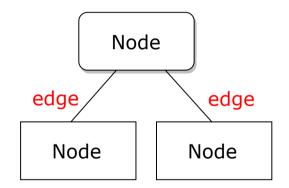
Definitions

Node

A basic unit that contains *data* (can be a feature or a decision)

Edge

The connection between two nodes



Definitions

Child

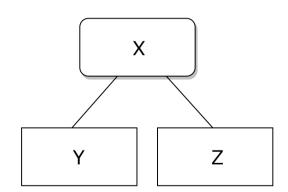
A connected node below.

Parent

A connected node above.

For example, Y and Z are children of X,

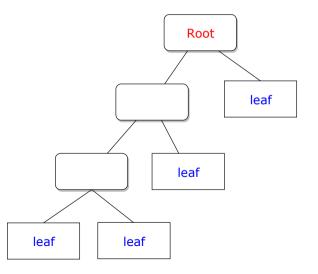
X is a parent of Y and Z.



Root The top node in a tree.

Leaf

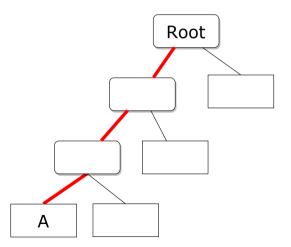
A node with no further edge



Depth of a node The number of edges to travel from the root to that node **Example**: The depth of **A** is 3

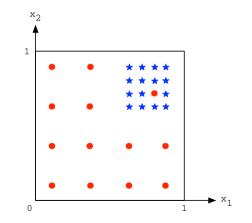
Maximum depth

Maximum of all possible depths in the tree



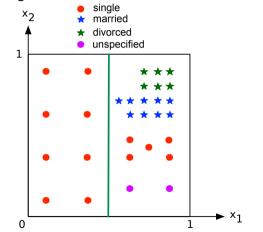
Example

Toy data with 2 features We'll try Maximum Depth = 2 (in other words, 2 splits)



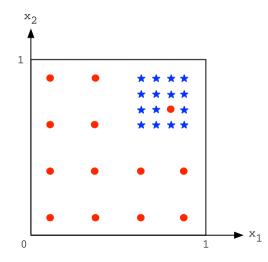
Categorical features

No one-hot encoding needed!



Uncertainty

How can we quantitatively determine the best value to split?



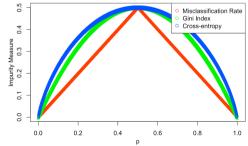
Information measure



Measure the **mixture** of points by a function *I*:

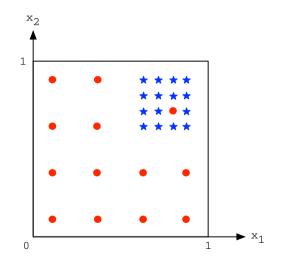
Misclassification rate:
$$I(S) = 1 - \max(p, 1 - p)$$

Entropy: $I(S) = -p \log p - (1 - p) \log(1 - p)$
Gini index: $I(S) = p(1 - p)$

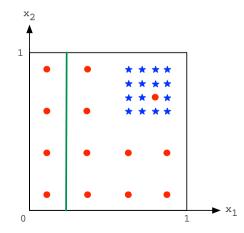


Expected information

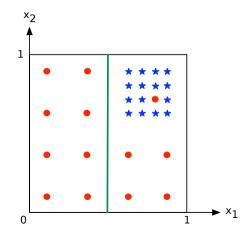
Expected information (EI) of a split is the weighted average of the measures



Example



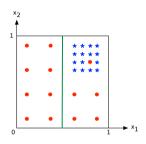
Example

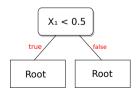


Tree splitting algorithm

for each leaf in the tree do: for each feature do: for each splitting value do: compute expected information

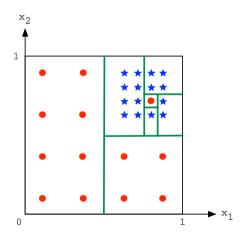
split at **leaf+feature+value** with smallest expected information





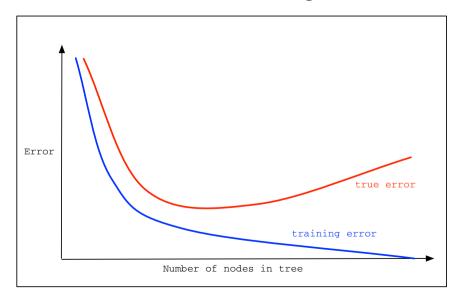
Overfitting

We can keep going until we get 100% accuracy on the training set



But the model overfits the data: that one red point is probably an outlier.

Test error as number of nodes grow



Preventing overfitting

How to reduce overfitting?

- specify the minimum number of samples required to split (min_samples_split)
- specify the maximum depth of the tree (max_depth)
- specify the minimum number of samples in each child node (min_samples_leaf)
- specify the maximum number of features to consider at each split (max_features)
- pruning i.e. build a full tree then remove the nodes until (cross) validation accuracy stops improving.

All these options are available in scikit-learn

Decision tree: pros and cons

Advantages

- · Simple, Easy to interpret
- · Accept both numerical and categorical features.
- · Accept any number of classes.
- · Can fit to any dataset.

Decision tree: pros and cons

Advantages

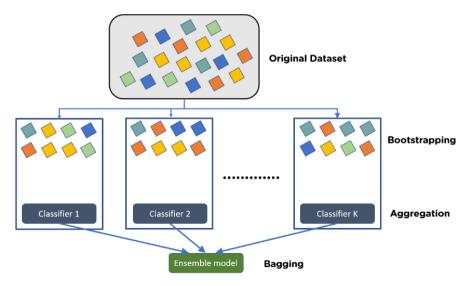
- · Simple, Easy to interpret
- · Accept both numerical and categorical features.
- · Accept any number of classes.
- · Can fit to any dataset.

Disadvantages:

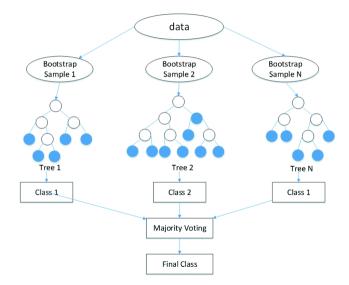
- Decision trees performs (e.g. test accuracy) worse than SVM and sometimes logistic regression
- · How can we improve decision trees?

Random Forest

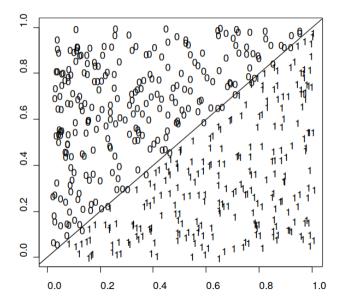
Bagging



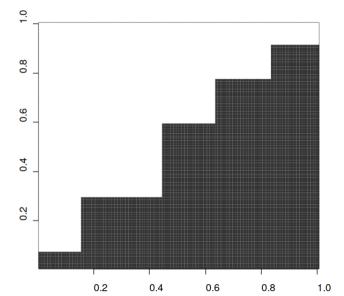
Decision trees with bagging



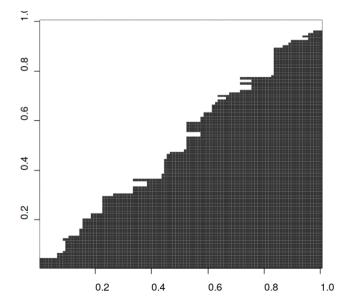
Hard problem for a single tree



A single tree



25 Voted tree

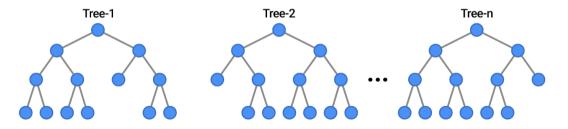


Random forest

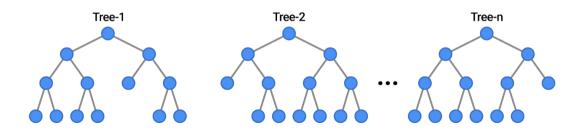
Random forest is a decision trees with bagging

+ one more source of randomness:

- At each split, select a random subset of features
- If there are d features, \sqrt{d} features are used in each split



Hyperparameters in random forest



Random forest algorithm

```
RandomForest(T, n_0)
```

Given a data set S of n labeled points:

for t = 1 to T:

Bootstrap $n_0 < n$ points from S

Fit a decision tree tree $_t$ to these points

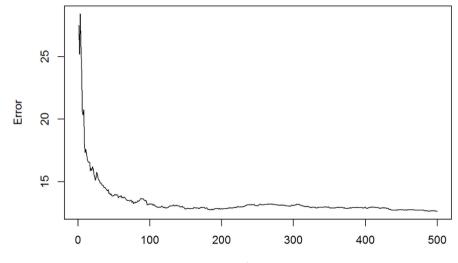
At each node,

Select \sqrt{d} variables at random from *d* variables Find the best split among the selected \sqrt{d} variables

Grow the tree to maximum depth

Final prediction: majority vote of tree₁, ..., tree_T

Test errors vs number of trees



trees

Random forest

