
Recurrent Neural Network



One-step forecast

x1

x2

x3

x10

...

h
(1)
1

h
(1)
2

h
(1)
5

...

h
(2)
1

h
(2)
2

h
(2)
5

...

x2

x3

x4

x11

...

Input
layer Hidden

layer 1
Hidden
layer 2

Output
layer

Problem: Past values depend on future values (e.g. x2 depends on x10)



Recurrent Neural Network

x
1

x
2

x
T

. . .h
1

h
2

h
T

h
0

y1 y2 yT

Inputs: x1, x2, . . . , xT

Hidden states: h1, h2, . . . , hT

Outputs: y1, y2, . . . , yT



Recurrent Neural Network

x
1

x
2

x
T

. . .h
1

h
2

h
T

h
0

y1 y2 yT

ht = tanh(Wxhxt +Whhht−1)

yt = Whyht.



RNN Initialization in PyTorch

an RNN with 10 input features, 20 hidden state dimensions, 2 layers, and
batch-first ordering

rnn_layer = nn.RNN(input_size=10, hidden_size=20,
num_layers=2, batch_first=True)



Character-level language model

• Goal: predicting the next
character.

• Use the next characters
as the target.



Types of RNN
One-to-one (Tx = Ty = 1)



Types of RNN
One-to-many (Tx = 1, Ty > 1)



Types of RNN
Many-to-one (Tx > 1, Ty = 1)



Types of RNN
Many-to-many (Tx = Ty)



Types of RNN
Many-to-many (Tx ̸= Ty)



Recurrent Neural Network

However, there’s gradient vanishing/exploding problem.



Gradient clipping

solves gradient exploding
what about gradient vanishing?



Long-short term memory (LSTM)



Long-short term memory (LSTM)

• Hidden state ht and Cell state ct

• ht is also the output.



LSTM Layer in PyTorch

lstm_layer = nn.LSTM(input_size=10, hidden_size=20,
num_layers=2, batch_first=True)



RNN vs LSTM



Text generation with LSTM

Example: Generate a paragraph with 400 characters from an input of 12
characters

Data: Text corpus from Wikipedia, preprocessed into 12 initial characters
+ 388 next characters

Prediction: Predict the paragraph from the initial characters: “The quick
br”



Embedding Layer in PyTorch

Transform from 1000-dimensional one-hot-encoding input into a
50-dimensional vector.

embedding_layer = nn.Embedding(num_embeddings=1000,
embedding_dim=50)



Simple LSTM Model for Text Generation

class SimpleLSTM(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers):

super(SimpleLSTM, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, vocab_size)

def forward(self, x, hidden):
x = self.embedding(x)
out, hidden = self.lstm(x, hidden)
out = self.fc(out)
return out, hidden



Text generation with LSTM

100 iterations
The quick br ypqznwrt lmji vbjfr lswmpz
jqir nkfld awzmr cxpk vnz jqtr awvn lsj...



Text generation

2000 iterations
The quick brown fox jumps the lazy over
the moon bright stars with sky running but
slowly path field...



Gated Recurrent Unit (GRU)



GRU Layer in PyTorch

gru_layer = nn.GRU(input_size=10, hidden_size=20,
num_layers=2, batch_first=True)



Deep RNN



Filling in the blank

I am ______.
I am ______ hungry at all.
I am ______ hungry, and I can eat a horse.

The missing word heavily depends on the words that come after



Bidirectional RNN



Bidirectional RNN Layer in PyTorch

rnn_layer = nn.RNN(input_size=10, hidden_size=20,
num_layers=2, bidirectional=True, batch_first=True)



Encoder-Decoder Seq2Seq



Sentence padding

Suppose RNN encoder has 7 hidden units, RNN decoder has 6 hidden units

How are we going to split the following sentences?

input = 'hello, how are you'
output = 'i am fine'

encoder_input = ['hello','how','are','you','<EOS>','<PAD>','<PAD>']
decoder_input = ['<START>','i','am','fine','<EOS>','<PAD>']

output = ['i','am','fine','<EOS>','<PAD>','<PAD>']



Sentence padding

Suppose RNN encoder has 7 hidden units, RNN decoder has 6 hidden units

How are we going to split the following sentences?

input = 'hello, how are you'
output = 'i am fine'

encoder_input = ['hello','how','are','you','<EOS>','<PAD>','<PAD>']
decoder_input = ['<START>','i','am','fine','<EOS>','<PAD>']

output = ['i','am','fine','<EOS>','<PAD>','<PAD>']


