Recurrent Neural Network

One-step forecast

Problem: Past values depend on future values (e.g. x_2 depends on x_{10})

Recurrent Neural Network

Inputs: x_1, x_2, \ldots, x_T Hidden states: h_1, h_2, \ldots, h_T Outputs: y_1, y_2, \ldots, y_T

Recurrent Neural Network

$$h_t = \tanh(W_{xh}x_t + W_{hh}h_{t-1})$$

$$y_t = W_{hy}h_t.$$

RNN Initialization in PyTorch

an RNN with 10 input features, 20 hidden state dimensions, 2 layers, and batch-first ordering

Character-level language model

- Goal: predicting the next character.
- Use the next characters as the target.

Types of RNN One-to-one ($T_x = T_y = 1$)

One-to-many ($T_x = 1, T_y > 1$)

Many-to-one $(T_x > 1, T_y = 1)$

Many-to-many ($T_x = T_y$)

Many-to-many ($T_x \neq T_y$)

Recurrent Neural Network

However, there's gradient vanishing/exploding problem.

solves gradient exploding

Long-short term memory (LSTM)

Long-short term memory (LSTM)

- Hidden state h_t and Cell state c_t
- h_t is also the output.

LSTM Layer in PyTorch

RNN vs LSTM

Text generation with LSTM

Example: Generate a paragraph with 400 characters from an input of 12 characters

Data: Text corpus from Wikipedia, preprocessed into 12 initial characters + 388 next characters

Prediction: Predict the paragraph from the initial characters: "The quick br"

Embedding Layer in PyTorch

Transform from 1000-dimensional one-hot-encoding input into a 50-dimensional vector.

Simple LSTM Model for Text Generation

```
class SimpleLSTM(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers):
        super(SimpleLSTM, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, vocab_size)
    def forward(self, x, hidden):
        x = self.embedding(x)
        out, hidden = self.lstm(x, hidden)
        out = self.fc(out)
        return out, hidden
```

Text generation with LSTM

100 iterations The quick br ypqznwrt Imji vbjfr Iswmpz jqir nkfld awzmr cxpk vnz jqtr awvn Isj...

Text generation

2000 iterations The quick brown fox jumps the lazy over the moon bright stars with sky running but slowly path field...

Gated Recurrent Unit (GRU)

GRU Layer in PyTorch

Deep RNN

Filling in the blank

I am _____. I am _____ hungry at all. I am _____ hungry, and I can eat a horse.

The missing word heavily depends on the words that come after

Bidirectional RNN

Bidirectional RNN Layer in PyTorch

Encoder-Decoder Seq2Seq

Sentence padding

Suppose RNN encoder has 7 hidden units, RNN decoder has 6 hidden units

How are we going to split the following sentences?

input = 'hello, how are you'
output = 'i am fine'

Sentence padding

Suppose RNN encoder has 7 hidden units, RNN decoder has 6 hidden units

How are we going to split the following sentences?

input = 'hello, how are you'
output = 'i am fine'

```
encoder_input = ['hello', 'how', 'are', 'you', '<EOS>', '<PAD>', '<PAD>']
decoder_input = ['<START>', 'i', 'am', 'fine', '<EOS>', '<PAD>']
output = ['i', 'am', 'fine', '<EOS>', '<PAD>', '<PAD>']
```