Transformer

Computer Vision

Convolutional NNs (+ResNets)

Natural Lang. Proc.

Recurrent NNs (+LSTMs)

Speech

Translation

RL bc/gail

1:	Input: Expert trajectories $\tau_E \sim \pi_E$, initial policy and discriminator parameters θ_0, w_0 for $i = 0, 1, 2,, do$			
3:	Sample trajectories $\tau_i \sim \pi_0$.			
4:	Update the discriminator parameters from w_i to w_{i+1} with the gradient			
	$\hat{\mathbb{E}}_{\tau_t}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))]$ (17)			
5:	Take a policy step from θ_i to θ_{i+1} , using the TRPO rule with cost function $\log(D_{w_{i+1}}(s, a))$. Specifically, take a KL-constrained natural gradient step with			
	$\hat{\mathbb{E}}_{\tau_i} [\nabla_{\theta} \log \pi_{\theta}(a s)Q(s, a)] - \lambda \nabla_{\theta}H(\pi_{\theta}),$ (18)			
	where $Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{r_i}[\log(D_{a_{i+1}}(s, a)) s_0 = \bar{s}, a_0 = \bar{a}]$ (10)			

CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png
 RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

Attention is All you Need

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin (2017)

A big picture

A smaller picture

Attention

Idea behind Self-Attention

Self-Attention as finding relevant words

Try it yourself

Step 1: From an input vectors, create Query vector, Key vector and Value vector

Step 2: Compute the **scores** of each word by taking dot-product of its **query** and the **keys** of the all words

Step 3: Divide by 8 (or the square root of the dimension of the key vectors) and apply Softmax

Step 4: Multiply each value vector by the softmax score, then sum the vectors. Irrelevant words with low softmax scores will not contribute much to the sum

Self-Attention with Multiple inputs

We can write multiple dot-products as a matrix multiplication

Self-Attention in one equation

Multi-head Attention

Motivation: Same words can have multiple meanings:

"She turned on the light" vs "The bag was very light"

Multi-head Attention

Motivation: Same words can have multiple meanings:

Multi-head Attention

but the feed-forward layer only takes a single matrix. How do we combine these into a single matrix?

Combining matrices

1) Concatenate all the attention heads

Z ₀	Z 1	Z 2	Z ₃	Z 4	Z 5	Z 6	Z 7

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

3) The result would be the \mathbb{Z} matrix that captures information from all the attention heads. We can send this forward to the FFNN

=

Summary of Multi-head Self-Attention

Revisit the Visualization

Positional Encoding

Positional Encoding

Solution: Add different vectors to the sequence of vectors (positional encoding)

Positional Encodings of first 10 words

If each word is a 64-dim vector. Below are positional encodings of first 10 words

Addition & Normalization

Addition & Normalization

Review: Batch normalization

Layer normalization

The Decoder: Cross-Attention

Cross-Attention

Causal attention

Causal attention

Training: Teacher forcing

Predictions

Predictions

Transformer-based Language Models

GPT (Generative Pretrained Transformer)

Invented by researchers at OpenAI 96 stacks of Transformer Decoder

BERT (Bidirectional Encoder Representations from Transformers)

Fine-tuning BERT

ChatGPT

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sample from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

We give treats and punishments to teach...

train a reward model.

Collect comparison data and

Step 2

A prompt and several model outputs are sampled.

A labeler ranks the

outputs from best

This data is used to train our reward model.

to worst.

 \odot Explain reinforcement learning to a 6 year old.

D>C>A>B

Step 3

A new prompt is

The PPO model is

initialized from the

supervised policy.

The reward model

for the output.

using PPO.

an output.

sampled from

the dataset.

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

References

- Jay Alammar. The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer
- Bala Priya. Build Better Deep Learning Models with Batch and Layer Normalization. https://www.pinecone.io/learn/batch-layer-normalization
- Sebastian Raschka. Understanding and Coding Self-Attention, Multi-Head Attention, Cross-Attention, and Causal-Attention in LLMs. https://magazine.sebastianraschka.com/p/ understanding-and-coding-self-attention
- Patrick von Platen. Transformers-based Encoder-Decoder Models. https://huggingface.co/blog/encoder-decoder