GANs and Diffusion Models

Generative models

thispersondoesnotexist.com

thiscitydoesnotexist.com

thischairdoesnotexist.com

thiscatdoesnotexist.com

thisstartupdoesnotexist.com

Why Generative Models?

Bicubic Interp. SRGAN Original Image

https:/ / arxiv.org/ abs/ 1609.04802

Image super-resolution

Why Generative Models?

Generative Design

Why Generative Models?

DALL-E2

"a painting of a fox sitting in a field at sunrise in the style of Claude Monet"

Text-to-Image generation

Generative Modeling

Assume that a dataset *D* is generated from a **probability distribution** *p*

Generative Models estimate *p* from the dataset *D*

Generative Modeling

Assume that a dataset *D* is generated from a **probability distribution** *p*

Generative Models estimate *p* from the dataset *D*

• $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\}$ supervised generative models learn the joint distribution $p(x, y)$, often to compute $p(y | x)$

Generative Modeling

Assume that a dataset *D* is generated from a **probability distribution** *p*

Generative Models estimate *p* from the dataset *D*

- $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\}$ supervised generative models learn the joint distribution $p(x, y)$, often to compute $p(y | x)$
- $\mathcal{D} = \{x^{(1)}, \ldots, x^{(n)}\}$ unsupervised generative models learn the distribution $p(x)$, often to generate a new sample $x \sim p(x)$

Generative Adversarial Networks

Step 1: Sample a noise vector z_{in} from the standard normal distribution

Step 2: Use a **Generator** to transform z_{in} to a fake image

$$
\frac{z_{\text{in}} \sim N(0, I_n)}{\text{latent noise}} \quad z_{\text{in}} \xrightarrow{\text{G}(z_{\text{in}})} x_{\text{fake}}
$$

Step 3: Mix fake images and real images together

Step 4: Use a **Discriminator** to classify between real and fake images

Two models in GANs

- *•* Two models compete against each other:
- *•* **Generator** tries to fool the discriminator by making realistic fake images
- *•* **Discriminator** tries to distinguish between real and fake images
- *•* This feedback loop results in **fake images that are similar to real images**

To train both models, we need loss functions

```
Let BCE = Binary Cross-Entropy Loss
```
Discriminator (*D*) First we obtain a pair of $x =$ real image and $G(z) =$ fake image

To train both models, we need loss functions

```
Let BCE = Binary Cross-Entropy Loss
```
Discriminator (*D*) First we obtain a pair of $x =$ real image and $G(z) =$ fake image

- The label of x is 1 (real) and the label of $G(z)$ is 0 (fake)
- The prediction of *D* on *x* is $D(x)$, and that on $G(z)$ is $D(G(z))$

To train both models, we need loss functions

Let $BCE =$ Binary Cross-Entropy Loss

Discriminator (*D*) First we obtain a pair of $x =$ real image and $G(z) =$ fake image

- The label of x is 1 (real) and the label of $G(z)$ is 0 (fake)
- The prediction of *D* on *x* is $D(x)$, and that on $G(z)$ is $D(G(z))$
- *•* Thus the loss of the discriminator *D* is:

 $BCE(D(x), 1) + BCE(D(G(z)), 0)$

To train both models, we need loss functions

```
Let BCE = Binary Cross-Entropy Loss
```
Generator (*G*) Consider $G(z)$ = fake image

- *•* Label *G*(*z*) as 1 if the discriminator classified it as a real image
- In other words, the generator wants is $D(G(z)) = 1$

To train both models, we need loss functions

```
Let BCE = Binary Cross-Entropy Loss
```
Generator (*G*) Consider $G(z)$ = fake image

- *•* Label *G*(*z*) as 1 if the discriminator classified it as a real image
- In other words, the generator wants is $D(G(z)) = 1$
- *•* Thus the loss of the generator *G* is:

 $BCE(D(G(z)), 1)$

DCGAN

Deep Convolutional GAN

Generator

DCGAN

Deep Convolutional GAN

Diffusion Models

Text-to-Image Demos

- *•* DALL·E 2: https://openai.com/dall-e-2
- *•* Stable Diffusion:
	- https://huggingface.co/spaces/stabilityai/stable-diffusion

https://dreamingcomputers.com/ai-images/stable-diffusion-ai-art "A fine detail concept art of a one steampunk narwhal, by tyler edlin trending on artstation hd, glowing colorful intricate wires"

Diffusion Models

- *•* **Forward diffusion:** Iteratively add noises to the image
- *•* **Backward diffusion:** Revert the process, transforming noises into an image

Forward diffusion

- 1. Choose **Diffusion Parameters** *β*1*, β*2*, . . . , β^T*
- 2. At step $t = 1, \ldots, T$, add noises to image:

$$
x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \varepsilon_{t-1}, \quad \varepsilon_{t-1} \sim \mathcal{N}(0, I_n)
$$

Forward diffusion

- 1. Choose **Diffusion Parameters** *β*1*, β*2*, . . . , β^T*
- 2. At step $t = 1, \ldots, T$, add noises to image:

$$
x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \varepsilon_{t-1}, \quad \varepsilon_{t-1} \sim \mathcal{N}(0, I_n)
$$

For all t , x_t can be written in terms of x_0 :

$$
x_t = \sqrt{\bar{\alpha}_t} x_{t-1} + \sqrt{1 - \bar{\alpha}} \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I_n),
$$

where $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \alpha_1 \alpha_2 \dots \alpha_t$

Learn the probability distribution(s)

$$
p(x_0,\ldots,x_T)=p(x_0\mid x_1)\times\ldots\times p(x_{T-1}\mid x_T)\times p(x_T)
$$

Learn the probability distribution(s)

$$
p(x_0,\ldots,x_T)=p(x_0\mid x_1)\times\ldots\times p(x_{T-1}\mid x_T)\times p(x_T)
$$

To generate a new image:

1. Sample a noise image $x_T \sim \mathcal{N}(0, I)$

2. For
$$
t = T, ..., 1
$$
, generate $x_{t-1} \sim p(x_{t-1} | x_t)$

Assume that *p*(*xt−*¹ *| xt*) is a **normal distribution**

$$
p(x_{t-1} | x_t) = \mathcal{N}(\mu_t(x_t), \beta_t I)
$$

We want to **learn** the distribution, which is the same as learning the parameter μ_t

Assume that *p*(*xt−*¹ *| xt*) is a **normal distribution**

$$
p(x_{t-1} | x_t) = \mathcal{N}(\mu_t(x_t), \beta_t I)
$$

We want to **learn** the distribution, which is the same as learning the parameter μ_t

A common technique to learn μ_t is to use a neural network:

- *• x^t* is the features
- *• µ^t* is the target

But we don't know $\mu_t ...$

Fortunately, we can write μ_t in terms of ε_t , which is the noise that we sampled during the forward diffusion!

Fortunately, we can write μ_t in terms of ε_t , which is the noise that we sampled during the forward diffusion! Thanks to Bayes's rule:

$$
p(x_{t-1} | x_t) = q(x_t | x_{t-1}) \times \dots
$$

and good properties of normal distributions, one can derive that

$$
\mu_t(x_t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t \right),
$$

$$
p(x_{t-1} | x_t) = \mathcal{N}(\mu_t(x_t), \beta_t I)
$$

We want to **learn** $\mu_t(x_t)$, and we have

$$
\mu_t(x_t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t \right),
$$

Idea: use a neural network to learn the noise instead

$$
\varepsilon_t = \varepsilon_t(x_t)
$$

- *• x^t* is the features
- *• ε^t* is the target

Training the model

- 1. Initialize T neural networks: NN_1, \ldots, NN_T
- 2. For many epochs
	- 2.1 Randomly choose *t* from *{*1*, . . . , T}*
	- 2.2 Sample a noise $\varepsilon_t \sim N(0, I)$
	- 2.3 Train NN_t with data: $(x_t, \varepsilon_t) = (\sqrt{\overline{\alpha}_t}x_{t-1} +$ *√* $(1 - \bar{\alpha}\varepsilon_t, \varepsilon_t)$

Sampling a new image

- 1. Sample $x_T \sim N(0, I)$
- 2. For $t = T, \ldots, 1$ do 2.1 $\varepsilon_t = NN_t(x_t)$ 2.2 $\mu_t = \frac{1}{\sqrt{6}}$ *αt* $\left(x_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}}} \right)$ $\left(\frac{-\alpha_t}{1-\bar{\alpha}_t}\varepsilon_t\right)$ 2.3 Sample $x_{t-1} \sim \mathcal{N}(\mu_t, \beta_t I)$

Diffusion model for Text-to-Image

- *•* DALL·E 2: https://openai.com/dall-e-2
- *•* Stable Diffusion: https://huggingface.co/spaces/stabilityai/stable-diffusion