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Why Generative Models?
Bicubic Interp. SRGAN Original Image

https:/ / arxiv.org/ abs/ 1609.04802

Image super-resolution



Why Generative Models?

Generative Design



Why Generative Models?

Text-to-Image generation



Generative Modeling

Assume that a dataset D is generated from a probability distribution p

Generative Models estimate p from the dataset D

• D = {(x(1), y(1)), . . . , (x(n), y(n))} supervised generative models learn
the joint distribution p(x, y), often to compute p(y | x)

• D = {x(1), . . . , x(n)} unsupervised generative models learn the
distribution p(x), often to generate a new sample x ∼ p(x)
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Generative Adversarial Networks



GANs

Step 1: Sample a noise vector zin from the standard normal distribution

zin

xfake
G(zin)

generator

zin ∼ N(0, In)

latent noise

xreal

x real?
D(x)

discriminator



GANs

Step 2: Use a Generator to transform zin to a fake image
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GANs

Step 3: Mix fake images and real images together
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GANs

Step 4: Use a Discriminator to classify between real and fake images
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generator
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Two models in GANs

zin xfake
G(zin)

generator

zin ∼ N(0, In)

latent noise

xreal

x real?
D(x)

discriminator

• Two models compete against each other:

• Generator tries to fool the discriminator by making realistic fake images

• Discriminator tries to distinguish between real and fake images

• This feedback loop results in fake images that are similar to real images



GANs Loss
To train both models, we need loss functions

Let BCE = Binary Cross-Entropy Loss

Discriminator (D) First we obtain a pair of x = real image and G(z) = fake image

• The label of x is 1 (real) and the label of G(z) is 0 (fake)

• The prediction of D on x is D(x), and that on G(z) is D(G(z))

• Thus the loss of the discriminator D is:

BCE(D(x), 1) + BCE(D(G(z)), 0)
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GANs Loss
To train both models, we need loss functions

Let BCE = Binary Cross-Entropy Loss

Generator (G) Consider G(z) = fake image

• Label G(z) as 1 if the discriminator classified it as a real image

• In other words, the generator wants is D(G(z)) = 1

• Thus the loss of the generator G is:

BCE(D(G(z)), 1)
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DCGAN
Deep Convolutional GAN

Generator



DCGAN
Deep Convolutional GAN



Diffusion Models



Text-to-Image Demos
• DALL·E 2: https://openai.com/dall-e-2

• Stable Diffusion:
https://huggingface.co/spaces/stabilityai/stable-diffusion

https://dreamingcomputers.com/ai-images/stable-diffusion-ai-art

“A fine detail concept art of a one steampunk narwhal, by tyler edlin trending on
artstation hd, glowing colorful intricate wires”

https://openai.com/dall-e-2
https://huggingface.co/spaces/stabilityai/stable-diffusion
https://dreamingcomputers.com/ai-images/stable-diffusion-ai-art


Diffusion Models

• Forward diffusion: Iteratively add noises to the image

• Backward diffusion: Revert the process, transforming noises into an image



Forward diffusion

1. Choose Diffusion Parameters β1, β2, . . . , βT

2. At step t = 1, . . . , T , add noises to image:

xt =
√

1− βtxt−1 +
√

βtεt−1, εt−1 ∼ N (0, In)

For all t, xt can be written in terms of x0:

xt =
√
ᾱtxt−1 +

√
1− ᾱε, ε ∼ N (0, In),

where αt = 1− βt and ᾱt = α1α2 . . . αt
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Backward diffusion

Learn the probability distribution(s)

p(x0, . . . , xT ) = p(x0 | x1)× . . .× p(xT−1 | xT )× p(xT )

To generate a new image:

1. Sample a noise image xT ∼ N (0, I)

2. For t = T, . . . , 1, generate xt−1 ∼ p(xt−1 | xt)
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Backward diffusion

Assume that p(xt−1 | xt) is a normal distribution

p(xt−1 | xt) = N (µt(xt), βtI)

We want to learn the distribution, which is the same as learning the parameter µt

A common technique to learn µt is to use a neural network:

• xt is the features

• µt is the target

But we don’t know µt...



Backward diffusion

Assume that p(xt−1 | xt) is a normal distribution

p(xt−1 | xt) = N (µt(xt), βtI)

We want to learn the distribution, which is the same as learning the parameter µt

A common technique to learn µt is to use a neural network:

• xt is the features

• µt is the target

But we don’t know µt...



Backward diffusion

Fortunately, we can write µt in terms of εt, which is the noise that we sampled
during the forward diffusion!

Thanks to Bayes’s rule:

p(xt−1 | xt) = q(xt | xt−1)× . . .

and good properties of normal distributions, one can derive that

µt(xt) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

εt

)
,
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Backward diffusion

p(xt−1 | xt) = N (µt(xt), βtI)

We want to learn µt(xt), and we have

µt(xt) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

εt

)
,

Idea: use a neural network to learn the noise instead

εt = εt(xt)

• xt is the features

• εt is the target



Training the model

1. Initialize T neural networks: NN1, . . . ,NNT

2. For many epochs
2.1 Randomly choose t from {1, . . . , T}
2.2 Sample a noise εt ∼ N(0, I)
2.3 Train NNt with data: (xt, εt) = (

√
ᾱtxt−1 +

√
1− ᾱεt, εt)



Sampling a new image

1. Sample xT ∼ N(0, I)

2. For t = T, . . . , 1 do
2.1 εt = NNt(xt)

2.2 µt =
1√
αt

(
xt − 1−αt√

1−ᾱt
εt

)
2.3 Sample xt−1 ∼ N (µt, βtI)



Diffusion model for Text-to-Image

• DALL·E 2: https://openai.com/dall-e-2

• Stable Diffusion:
https://huggingface.co/spaces/stabilityai/stable-diffusion

https://openai.com/dall-e-2
https://huggingface.co/spaces/stabilityai/stable-diffusion

