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Abstract Liver and bile duct cancers are leading causes of worldwide cancer
death. The most common ones are hepatocellular carcinoma (HCC) and intrahep-
atic cholangiocarcinoma (ICC). Influencing factors and prognosis of HCC and ICC
are different. Precise classification of these two liver cancers is essential for treat-
ment and prevention plans. The aim of this study is to develop a machine-based
method that differentiates between the two types of liver cancers from multi-phase
abdominal computerized tomography (CT) scans. The proposed method consists
of two major steps. In the first step, the liver is segmented from the original
images using a convolutional neural network model, together with task-specific
pre-processing and post-processing techniques. In the second step, by looking at
the intensity histograms of the segmented images, we extract features from re-
gions that are discriminating between HCC and ICC, and use them as an input
for classification using support vector machine model. By testing on a dataset of
labeled multi-phase CT scans provided by Maharaj Nakorn Chiang Mai Hospital,
Thailand, we have obtained 88% in classification accuracy. Our proposed method
has a great potential in helping radiologists diagnosing liver cancer.

Keywords Classification · Machine Learning · Image Processing · Liver
Neoplasms · Tomography
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1 Introduction

As reported by the Global Cancer Statistics 2018 [7], liver and bile duct cancers are
leading causes of worldwide cancer death as they were the second most responsible
for cancer mortality in male and the sixth most responsible for cancer mortality
in female, combined into an estimate of over 750,000 deaths in 2018. The highest
incidence rate is found in the Southeast Asia, East Asia, and Africa [19]. It is also
the most common cancer in Thai male and the second most common cancer in
Thai female with an age-standardized rate (ASR) per 100,000 persons of 33.9 and
12.9, respectively [18]. The most common types of liver cancer are hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC).

Since risk factor, prognosis, and also the management of HCC and ICC are
different [20, 21, 29, 35, 36, 11], accurate screening is essential for treatment and
prevention plans. Radiology imaging techniques, such as multi-phase computed
tomography (CT) and magnetic resonance imaging (MRI), have been commonly
used for diagnosis and classification of HCC and ICC. In practice, both can be
identified by relative intensity of lesions in four-phase CT images of a patient after
being injected with a contrast medium. HCC lesions exhibit low attenuation on
non-contrast images, early peak of enhancement on arterial phase and followed by a
continuous decrease in attenuation on portal venous and delayed phases, while ICC
lesions typically show homogeneously low attenuation on non-contrast scans, faint
peripheral enhancement on arterial phase and gradual centripetal enhancement on
portovenous and delayed phases. Accuracy of these techniques depends on the size
of tumors, complications of cirrhosis and the radiologists’ experience [9, 25, 32].
However, Despite of existing diagnosis guidelines for these two types of liver cancer
[8, 12, 13, 30], HCC can still be mistaken with ICC due to similar enhancement
patterns in CT images.

Despite the importance of the task, classification of HCC and ICC using ma-
chine learning (ML) has rarely been explored. Based on our knowledge and accord-
ing to recent reports on application of artificial intelligence on hepatology [4, 5],
there is no article of machine learning techniques for classifying HCC and ICC
listed in PubMed, EMBASE, and the Web of Science. We found only a study from
[26] which employed Convolutional Neural Network (CNN) for the classification
task on CT images whose tumor regions were semi-automatically segmented by a
radiologist expert. Although the CNN has excellent performance in distinguishing
HCC and ICC, it requires a large training dataset in order to avoid over-fitting.
Another issue of CNN is the lack of interpretability.

For ML applications of other CT-based liver diagnoses, liver segmentation is
often required in order to exclude unnecessary factors from image analysis. Over
the past few years, deep learning models have shown to be very successful in med-
ical segmentation. The reports on ISBI 2017 and MICCAI 2017 liver segmentation
challenges [6] indicate the success of deep learning models, especially the U-Net
[31], in terms of segmentation accuracy. However, due to variation in liver shapes,
scanners, contrast enhancement and contrast mediums, automating liver segmen-
tation across different domains poses a challenging task. In the case of multi-phase
images, it is expensive and time-consuming to obtain expert-verified ground truth
segmentation of images in all phases. Thus, in many situations, it is desirable to
build a segmentation model using images from a single phase that also works well
on images from all other phases. Since many deep learning models are usually
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biased toward the training set, they do not fit this description. When we apply
these models to images in high-contrast medium-enhanced phases, the lesions are
often excluded from the segmentation.

In this work, we propose a classifier for liver cancer diagnosis of HCC or ICC
from multi-phase CT images. The proposed method takes multi-phase CT images
of a patient, who has been diagnosed with a liver cancer. However, the diagnosis
cannot identify whether the type of cancer is HCC or ICC. The main purpose of
this method is to classify the type of cancer that appears in CT images and marks
the regions that influence its decision.

Our approach to the classification is based on the changes in pixel intensity; a
blob that is darker or lighter than its background is marked as a lesion, and the
changes in color of the lesion across multi-phase images should be able to indicate
the type of the cancer. However, without restricting the “background” region, we
would run into several issues: (1) it would be quite difficult to tell the lesions
apart from other small organs (2) the background is typically incongruous from
having multiple organs, making it impossible to identify a liver lesion. Thus, for
our approach to be effective, it is essential that the searching region is limited to
only the liver. From this point of view, we chose to perform liver segmentation
before the classification.

As a whole, our HCC-ICC classification method consists of two major steps:

1. Liver segmentation for capturing the region of interest
2. Classification using information from discriminative regions on liver.

During the segmentation step, several techniques are employed to address the
segmentation issues. First, we use a histogram-based technique to match the color
distribution between the non-contrast and high-contrast phases. Secondly, we have
modified U-Net so that its output map at each pixel behaves more like a prob-
ability value instead of being strictly 0 or 1. Lastly, these probability maps are
re-calibrated by a graphical model that puts less emphasis on contrast and more
on proximity of high-probability regions. As a result, the lesions that were not
detected before will be included in the post-processed image, which is then passed
to the classification model.

Within the classification model, we propose a feature extraction method based
on the differences in pixel intensity between the phases. These features indicate
the discriminative regions in the multi-phase CT images, which can be used to
identify the type of liver cancers. We then use these features to build a HCC-
ICC classifier. Experimental results show that, among several machine learning
models, support vector machine performs the best on this task. As an additional
benefit, the discriminative regions can help radiologists spot the lesions and see
the reasoning behind the classification results.

2 Materials

In this study, two datasets of 2D CT images were used: (1) a dataset for classifica-
tion models, consisting of multi-phase images of liver cancer patients (four images
per patient) who has already been diagnosed with either HCC or ICC. Note that
this dataset does not come with ground truth liver segmentation. (2) a dataset for
segmentation models, consisting of single-phase images, either in non-contrast or
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delayed phase, labeled with ground-truth liver segmentation. These datasets are
explored in more details below.

2.1 CMU HCC-ICC dataset

Under an institutional review board-approved protocol, we obtained CT imaging
data and clinical data of 187 HCC cases and 70 ICC cases diagnosed during 2013-
2014 from Maharaj Nakorn Chiang Mai hospital. The diagnosis of HCC and ICC
were based on clinical information, laboratory test, CT imaging and treatment
response.

The abdominal CT scans, starting from the dome of the diaphragm to the
iliac crest, were performed with a multi-detector CT scan (SOMATOM definition,
Siemens, Germany). The CT parameters were 120 kVp, 200-400 mAs, 0.6 mm ×
64 section collimation with a single breath-hold helical acquisition.

With these settings, the non-contrast images were obtained with 5-mm-thick
axial sections. After that, the patient was intravenously administered with ap-
proximately 100-150 ml of nonionic contrast material containing 300-350 mg/ml
of iodine. The triple-phase high-contrast images were then acquired successively
after the administration; the hepatic arterial phase images were acquired after 25-
30 seconds, the portal venous phase images after 60-70 seconds and the delayed
phase images after five minutes.

The CT images, stored in DICOM format, were displayed in a viewing software
(Synapse PACS;FUJIFILM Medical Systems U.S.A) with 50 HU window level
and 300-500 window width. Using the image capture function, liver masses were
converted to 8-bit Joint Photographic Experts Group (JPEG) format (512 × 512
pixels).

Medical professionals then use their knowledge to pick a single image from each
phase, combined into a sequence of four CT scans that best identifies the type of
liver cancer. An example of multi-phase images of a patient is shown in Figure 1.
As the names suggest, the lesions become clearly visible from the contrast media
in high-contrast phases.

Because of the small number of samples, we settled with the 10-fold cross
validation as our out-of-sample testing method. This means that, in each trial,
we will be training our classification model on 168-169 HCC samples and 63 ICC
samples, and testing on 18-19 HCC samples and 7 ICC samples.

non-contrast arterial portal venous delayed

Fig. 1 A sample of multi-phase CT images in CMU HCC-ICC dataset.
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2.2 Datasets for liver segmentation

Due to high variability of liver’s shapes in 2D cross-sectional images, we need
to obtain as much labeled data as possible in order to train an efficient deep
learning model for liver segmentation. Our training data for liver segmentation
was extracted from various sources as indicated in Table 1, combined into a total
of 171 DICOM series of CT scans in the abdominal area, together with the manual
segmentation performed by several expert radiologists. Since each image in our
CMU HCC-ICC dataset (see details in subsection 2.1) always contains the liver,
we can reduce the number of samples (slices) by picking only slices that contain
the liver. From the original series, we extracted a total number of 18,739 slices with
ground truth segmentations, which were then split into a training set of 16,697
slices from 157 patients and a validation set of 2,042 slices from 17 patients for
training the model.

Table 1 List of publicly available datasets of liver segmentation that we used to train our
segmentation model

Dataset Institution #Volumes References
3Dircadb-01 IRCAD 20 [14]
Sliver’07 IRCAD 20 [17]
LiTS Various 131 [6]

3 Proposed method

Assume that each set of multi-phase CT images obtained in subsection 2.1 has
either HCC lesions or ICC lesions, but not both. The goal is to build an automatic
system that correctly classifies the liver cancer type from these four images. As
mentioned in the introduction, our approach to this problem consists of (1) liver
segmentation and (2) classification. The details of each step will be explained in
the next sections.

3.1 Liver segmentation

The segmentation follows the usual preprocess-segment-postprocess workflow Fig-
ure 2, specifically designed to be robust to complication of lesions in high-contrast
phases. In this section, we describe all the methods that we used to obtain the
robustness to complication of liver lesions.

3.1.1 Histogram matching

Although the segmentation technique can be directly apply to CT images in the
CMU HCC-ICC dataset in non-contrast, portal venous and delayed phases, CT
images in arterial phase need to be adjusted in contrast level because they are
relatively darker than the other phases. Therefore, we match its histogram with the
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Public datasets

Data augmentations

Liver segmentation using U-Net

Training phase Test phase

CT slices with ground truths
CMU HCC-ICC dataset
Multi-phase CT images

Histogram matching

Post-processing with CRF

CMU HCC-ICC dataset
Liver-segmented CT images

Fig. 2 An overview of proposed segmentation workflow.

delayed phase image of the same patient before segmenting with U-Net. Suppose
that PA(x) and PD(x), 0 ≤ x ≤ 255 is the cumulative histogram (with 256 bins)
of the arterial phase image A and delayed-phase image D, respectively. Then, by
linearly interpolating PD into a continuous cumulative distribution function P ′D,
we match PA to P ′(D) by transforming A as follows:

For each xi ∈ A, xi 7→ x′i if PA(xi) = P ′D(x′i).

See Online Resource 1 for an example of matching images from two different
phases. This does not only brighten the liver in the arterial phase but also reduces
the contrast in that area.

3.1.2 Liver segmentation using U-Net

U-Net architecture For the segmentation task, we adopt U-Net [31]. The network
architecture of U-Net consists of a downward encoding path where the model
aggregates local information and the upward decoding path where the encoded
images was upsampled and reinforced by the information from the downward path
in order to recover spatial information. In contrast to the network architecture in
[31], we reduced the output dimensions in some of the layers in order to reduce
the training time (Figure 3).

Loss function As U-Net is trained via minimizing a loss function, we have to
define a loss function that is appropriate for our task. Let M be the total number
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Fig. 3 A modified U-Net architecture in which an instance normalization layer is inserted
after every convolutional layer.

of images in one training batch, N the total number of pixels in one image, um =
[um1 , u

m
2 , . . . , u

m
N ] ∈ [0, 1]N be the probabilistic output of applying U-Net on m-th

image and vm = [vm1 , v
m
2 , . . . , v

m
N ] ∈ {0, 1}N be the ground truth segmentation of

m-th image. Our loss function is:

Ldcce = Ldc + Lce. (1)

which is a combination of the DICE loss

Ldc = − 1

M

M∑
m=1

DICE(um,vm) (2)

DICE(um,vm) =
2um · vm∑
i u
m
i +

∑
i v
m
i

. (3)

and the weighted cross-entropy loss

Lce = − 1

M

M∑
m=1

[η(1)vmi log umi + η(2)(1− vmi ) log(1− umi )],

Intuitively, DICE(um,vm) measures the similarity between the prediction and the
ground truth. The value is one only if both images match, and zero if they are
disjoint. η(1) and η(2) are per-class weights, chosen in order to counteract class
imbalance. In this study, we set (η(1), η(2)) = (0.7, 0.3) in order to emphasize more
on positive labels incorrectly classified as negative.
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3.1.3 Post-processing with Conditional Random Field

The segmentations from U-Net might contain some false negatives due to con-
trast enhancement. Fortunately, training with weighted-cross entropy loss gives us
probability-valued predictions (in contrast to strictly 0’s and 1’s). We then post-
process U-Net’s outputs with fully connected conditional random fields (CRF),
which changes the probability values based on proximity and color similarity of
pixels in the original images [22]. The mathematical formulation of the fully con-
nected CRF for image segmentation in Online Resource 2.

We give an example in Online Resource 3 which shows that using the mixed
loss Ldcce allows CRF to effectively re-calibrate the output from U-Net which leads
to more accurate segmentation.

Figure 4 shows segmentation of the liver in high-contrast phases. The results
shown in the last row indicate that the segmentation can be improved with artificial
lesions and instance normalization.

a)

arterial arterial portal venous delayed

b)

Fig. 4 Examples of post-processed liver segmentations from HCC-ICC dataset. From top to
bottom row: a) original image, b) segmentation with U-Net and CRF.

3.2 Classification

In this section, we describe the process of classifying HCC and ICC based on multi-
phase CT images. The diagram of the proposed classification technique is shown in
Figure 5, consisting of four steps: (1) analysis of pixel intensity (2) determination
of potentially discriminative regions (3) discriminative feature extraction and (4)
classification of HCC and ICC. Each of these steps is described as follows.

3.2.1 Analysis of pixel intensity

As HCC and ICC can be diagnosed by observing the change of color of contrast
medium in multi-phase CT images, we first analyzed the color intensity distri-
butions of the CT images. For each CT image, the color intensity distribution is
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Training dataset

Analysis of pixel intensity

Determination of potentially-discriminative 

regions

Discriminative feature extraction

Potentially-discriminative maps

Multi-WHoID

Feature vectors
Multi-WHoID

Feature vectors

Classification of HCC and ICC

HCC / ICC

Result

Training phase Test phase

Liver-segmented CT images

Test dataset
Liver-segmented CT images

For each patient

Fig. 5 Flowchart of the proposed classification technique

constructed. We found that the color intensity values tend to be around a central
value and their distributions are almost normal (see examples in Online Resource
4). The color intensity values of pixels on normal regions are tightly clustered
around the mode, while that of the lesions are either lower (called hypodensity
region) or higher (called hyperdensity region) than the mode.

Next, for each enhancement phase, we constructed the color intensity distribu-
tions from all CT images of HCC and ICC as given in Online Resource 5. As the
CT images of the same enhancement phase were created under the same settings,
the mode of color intensity distributions of HCC and ICC are not significantly
different. Moreover, the color intensity of normal regions on CT images of HCC
and ICC varies in the same distribution. As a result, each enhancement phase can
be represented as the color intensity distribution constructed from all HCC and
ICC images (Online Resource 6). We denote the most frequent value of color in-
tensities for non-contrast, arterial, portal and delayed phases by tN , tA, tP and tD,
respectively. These values will be used as parameters to determine lesion regions
in the next step.

3.2.2 Determination of potentially discriminative regions

After obtaining the most frequent value of color intensities on a set of CT images
for each enhancement phase, the value is used as a parameter for determining the
regions on CT images that have high potential for discriminating between HCC
and ICC. In this work, lesions (both hypodensity and hyperdensity regions) are
emphasized as potentially discriminative regions because physicians consider the
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Determination of potentially-discriminative regions

Binarize CT image

Generate LBP image

Binary image B

Divide LBP image

into small cells

LBP image

LBP image

Represent cells by

histograms of LBP labels

Cluster cells into two 

groups using k-mean

LBP feature vectors

Generate labeled image

Labeled image L

Clusters of cells

Smooth labeled image

with Gaussian filter

Labeled image L

Generate discriminative 

map

Segmented CT image I Discriminative map M

Threshold value t

t Î {t
N 

, t
A 
, t

P 
, t

D
}

Fig. 6 Processing flow of determination of potentially discriminative regions

intensity enhancement of those regions on multi-phase CT images to distinguish
between HCC and ICC. Figure 6 summarizes the processing flow of this step.
To determine the potentially discriminative regions, a CT image I(i, j) is first
transformed into a binary image B defined by:

B(i, j) =

{
1 if I(i, j) ≥ t
0 otherwise

, (4)

where the threshold value t is selected from {tN , tA, tP , tD} depending on the
enhancement phase of the input CT image. An example binary image generated
from a CT image on arterial phase of HCC is given in Figure 7. As the intensity
value of all pixels on the same lesion region is lower or higher than the threshold
value, the texture of lesion regions on binary image is uniform. In contrast, the
texture of the other areas is rough because the pixel intensity values vary around
the threshold value. Therefore, we can distinguish the lesion regions from the
others by analyzing the patterns of the texture.

Second, we adopted Local Binary Patterns (LBP) , which is one of the most
popular features used for texture classification, as texture descriptor. For each
pixel, a binary number is extracted by comparing the pixel with its 8 neighbors.
The neighbors having smaller value than that of the central pixel will have the
bit 0, and the other neighbors having value equal to or greater than that of the
central pixel will have the bit 1. For each given central pixel, the binary number is
obtained by concatenating all these binary bits in a clockwise manner. It can be
represented as a decimal value called LBP label. A new image, called LBP image,
is generated by replacing each pixel on the binary image with its LBP label.

Then, the LBP image is divided into equally sized smaller cells. For each cell,
a histogram of LBP labels is calculated. This histogram can be seen as a 256-
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Original CT Image Binary Image

Hypodensity Region

Hyperdensity Region

Fig. 7 An example binary image of a CT image. The binary image (right) was generated from
a CT image (left) on arterial phase of HCC. Dark-uniform and light-uniform areas on the binary
image correspond to hypodensity and hyperdensity regions on the CT image, respectively.

dimensional feature vector. The length of the feature vector can be reduced to 36
by considering rotational invariant patterns.

Next, all cells represented by LBP feature vectors are clustered into two groups
i.e. uniform and non-uniform patterns. In this work, k-mean clustering (i.e. k = 2)
was used. Then, a labeled image L is constructed. The value of L(i, j) will be 1
if its corresponding cell has the uniform pattern; otherwise it will be 0. As the
labeled image L has the size of height

cell’s size ×
width

cell’s size , it is enlarged to have the same
size with the input CT image. Then, the image L is smoothed by convolution with
a Gaussian function defined as:

G(i, j) =
1

2πσ2
e−

i2+j2

2σ2 , (5)

where x is the distance from the origin in the horizontal axis, y is the distance
from the origin in the vertical axis, and σ is the standard deviation of the Gaussian
distribution.

Finally, a discriminative map M is generated by

M(i, j) =

{
L(i, j) if (i, j) ∈ R

0 otherwise
, (6)

where R is the set of pixels on the liver area. An example of a discriminative map
is shown in Figure 8. The value of M(i, j) is 1 if the position (i, j) lies on lesion
regions. On the other hand, the value is close to zero if the position (i, j) is far
from lesion regions. The function M can then be viewed as a discriminative score
of pixel (i, j).

3.2.3 Discriminative feature extraction

As the color intensities are used as a criterion to distinguish HCC and ICC based
on CT images, the intensity histogram is adopted to pack intensity information
of multi-phase CT images in a feature vector. Normally, an intensity histogram is
constructed by considering all pixels on image with the same weight. In this work,
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Fig. 8 Contour plot illustrating a discriminative map of a CT image

Algorithm 1: Weighted Histogram of Intensity (WHoI)

Input: An input image I, a weight value matrix W and the number of bins b.
Output: A weighted histogram of intensity H
begin

[nRow, nCol]← size(I)

binSize← b 256
b
c

H ← zeros(1, b)
for i = 1 to nRow do

for j = 1 to nCol do

H(b I(i,j)
binSize+1

c+ 1)← H(b I(i,j)
binSize+1

c+ 1) + W (i, j)

we propose Weighted Histogram of Intensity (WHoI) that all pixels are weighted
by their discriminative scores. Algorithm 1 describes the construction of a WHoI.
A feature vector of a CT image I is constructed by:

FI = WHoI(I,M, b). (7)

For a partial, we have four CT images generated from different enhancement
phases i.e. non-contrast, arterial, portal and delayed phases. A feature vector can
be formed by:

F = FN ⊕ FA ⊕ FP ⊕ FD, (8)

where N , A, P and D are the CT image of non-contrast, arterial, portal and
delayed phased, respectively. We named the feature vector as Multi-phase WHoI
Descriptor (Multi-WHoID).

3.2.4 Classification of HCC and ICC

Using the extracted features, we adopted the support vector machine (SVM) as
the baseline classifier. The goal of SVM is to find a separating hyperplane which
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maximizes the margin between the two classes [10]. The SVM predicts the class
label ŷ for any given data point x by:

ŷ = f(x) = sign(wTφ(x) + b), (9)

where φ(x) maps x into a higher-dimensional space, w is the weight vector and b
is the bias.

Let D = {(xi, yi)}ni=1 be a training dataset where xi = [xi1, xi2, ..., xip]T is a
data point represented by a feature vector and yi ∈ {+1,−1} is a class label of
xi. As we know that w =

∑n
i=1 αiyiφ(xi), the SVM algorithm maximizes the dual

representation of the maximum margin problem defined as

L(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj), (10)

with respect to α = {α1, α2, ..., αn} subject to the constraints

0 ≤ αi ≤ c, i = 1, 2, ..., n and
n∑
i=1

αiyi = 0, (11)

where c > 0 is the regularization parameter that controls a trade-off between
training error and generalization, and k(·) is the kernel function. Thus, the decision
function becomes

f(x) = sign

(
n∑
i=1

yiαik(xi,x) + b

)
. (12)

Any data point for which αi = 0 will not appear in Equation 12 and plays no
role in making the prediction for new data point. The remaining data points that
satisfy αi > 0, commonly named as support vectors, correspond to points that lie
on the maximum margin hyperplanes in feature space. As we found a value of α,
we can determine the value of bias b by

b =
1

|S|
∑
i∈S

(
yi −

∑
j∈S

αjyjk(xi,xj)

)
, (13)

where S is the set of indices of the support vectors.
The kernel functions investigated in this study are the following:

Linear: k(xi,xj) = xTi xj

Radial basis function: k(xi,xj) = exp(γ‖xi − xj‖2)

Chi-square: k(xi,xj) =

p∑
k=1

2xikxjk
xik + xjk

Generalized histogram intersection: k(xi,xj) =

p∑
k=1

min(|xik|α, |xjk|α).

with γ > 0 and α > 0 being the kernel parameter of Radial Basis Functions (RBF)
and Generalized Histogram Intersection kernel (GHI), respectively. The linear and
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RBF kernels are mostly used in pattern recognition works while the Chi-square
and GHI kernels are developed for histogram based feature vectors.

In this work, the SVM hyper-parameter c and the kernel’s parameter γ were
optimized by grid-search method with cross validation. The values of c and γ
in the set {2−10, 2−8, 2−6, 2−4, 2−2, 20, 22, 24, 26, 28, 210} were evaluated while the
kernel’s parameter α was set to be 1.

4 Results

4.1 Experiment protocol

We evaluate the segmentation method on the public datasets and the classification
method on the HCC-ICC dataset. Note that the public datasets mentioned in
Table 1 come with the ground truth segmentation but do not have the HCC-ICC
labels, while the CMU HCC-ICC dataset does not come with the segmentation
while having the HCC-ICC labels.

Evaluation of liver segmentation Let ui ∈ [0, 1]512×512 be the U-Net’s segmenta-
tion and vi ∈ {0, 1}512×512 be the ground truth segmentation of the i–th image.
The dice score is defined by:

Dice score =
2

n

n∑
k=1

∑
i u
k
i v
k
i∑

i u
k
i +

∑
i v
k
i

,

where n is the number of samples in the test set. To measure the performance of U-
Net under different normalization techniques (none, BN or IN) and loss functions
(Ldc or Ldcce), DICOM series of 17 patients were taken from the segmentation
dataset (Table 1) as a hold-out test set. Then, we trained each of these models on
the training set 10 times and compute the mean of the Dice scores on the test set.
Each of these models was implemented in Keras (available on https://keras.io).
The training consisted of 8 instances per batch, 1,000 batches per epoch and 20
epochs per session. After each epoch, the model was evaluated on the validation
set and the training would be stopped early if the validation dice score had not
been improved for four consecutive epochs. We set the initial learning rate to be
10−3 and reduce the learning rate by a factor of 0.2 if the validation Dice score
has not been improved for three epochs.

Evaluation of HCC-ICC classification To find the most suitable features and mod-
els for the classification, we performed several experiments, each of which consisted
of 30 trials of 10-fold cross validation (10-CV) on the HCC-ICC dataset. For each
trial, the dataset was randomly shuffle. The available samples were partitioned
into 10 groups. Then nine of the groups are used to train the classifier that are
then evaluated on the remaining group. This process is then repeated for all 10
possible choices for the hold-out group. The performance of the proposed method
was evaluated in term of recognition accuracy, True Positive Rate (TPR), True
Negative Rate (TNR), Positive Predictive Value (PPV) and Negative Predictive
Value (NPV). Note that both PPV and NPV are dependent on the prevalence of
the diseases on the population of interest [23].

https://keras.io
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To compare the performance of two methods with the average performance
score of multiple-experiments, we adopt the Wilcoxon signed-rank test at the sig-
nificance level of 0.05, and we reject the null hypothesis if the recognition accuracy
provided by the classifier A is significantly higher than that provided by the clas-
sifier B.

4.2 Performance of proposed segmentation method

We firstly evaluated the performance of U-Net under different normalization tech-
niques and loss functions. Figure 9 reports the performances of segmentation mod-
els in term of the mean Dice scores with standard deviations.
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Fig. 9 Dice scores of U-Net with various design choices.

We can see improvements in segmentation by incorporating normalization tech-
niques in the model, and U-Net with the mixed loss Ldcce and IN gives the best
predictions compared to other designs. We also observe that CRF almost always
helps improve the segmentations, with an exception of simple U-Net with the Dice
loss.

4.3 Performance of Multi-WHoID with different SVM kernel functions

In this experiment, we determine the most effective SVM kernel function and
the number of bins for distinguishing HCC from ICC using multi-WHoID. The
recognition accuracies are shown in Figure 10. The highest average accuracy of
88.19% was achieved when the number of bins in each WHoI was set to be 64.
Thus, in this work, we decided to use SVM with the GHI kernel function as the
classifier. The multi-WhoID formed by four WHoI with 64 bins was used as feature
descriptor.
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Fig. 10 The recognition performance of Multi-WHoID (with different numbers of bins for
each WHoI) with four different SVM kernel functions.

4.4 Performance of proposed method on distinguishing HCC and ICC

The performance of the proposed method in terms of TPR, TNR, PPV and NPV
is given in Figure 11. The results indicate that the proposed method correctly
detected 89.30% of the HCC patients and 84.42% of the ICC patients.

Among all patients classified as having HCC, 95.18% of them were HCC pa-
tients. In contrast, only 69.44% of all patients identified with ICC were actually
ICC patients. We can see that the NPV is significantly lower than the PPV because
of a small sample size of ICC patients in the CMU HCC-ICC dataset.

4.5 Performance comparison between Multi-WHoID and standard intensity
histograms

We compared the performance between Multi-WHoID and standard intensity his-
tograms (Figure 11 and 12). Among different values of the number of bins, the
combining of standard intensity histograms reaches the highest accuracy of 86.43%
when the number of bins is 64. However, as can be seen in Figure 12, the multi-
WHoID, which is the concatenation of single-phase WHoIDs (defined as Eq. (8)),
provides a significantly higher accuracy than the aggregation of standard intensity
histograms for all considered values of the number of bins. Also, as can be seen in
Figure 11, TPR, TNR and NPV provided by the multi-WHoID are significantly
higher than that provided by intensity histograms. Lastly, the multi-WHoID pro-
vided a significantly higher PPV than the intensity histograms.

From the results, the multi-WHoID outperforms the combination of standard
intensity histograms in distinguishing HCC and ICC, showing that emphasizing
the pixels on lesion regions can improve the performance of discriminating the two
liver cancers. Thus, the WHoI is appropriate to be used as feature descriptor.
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Fig. 11 The performance of Multi-WHoID descriptor compared to that of standard intensity
histograms. The SVM with GHI kernel is used as the classifier. The results show True Posi-
tive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value (PPV) and Negative
Predictive Value (NPV) from multiple evaluations as box-plots.
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Fig. 12 Performance comparison between standard intensity histograms and Multi-WHoID
with different numbers of bins.

4.6 Performance of proposed features with well-known classifiers

We adopted some well-known classifiers with the proposed features to discriminate
HCC and ICC. The SVM with GHI kernel used as the classifier was replaced by k -
nearest neighbors (kNN), decision tree, random forest and multi-layer perception
(MLP). The parameter k of kNN in a set {1, 3, 5} was evaluated. As well, the
number of trees in the random forest was set to be 50 and 100. For the MLP, the
architecture was designed following the suggestions in [16], which consists of one
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hidden layer with 173 hidden nodes, and the activation function employed was the
familiar hyperbolic tangent function.

The performance comparison of applying the Multi-WHoID with kNNs, deci-
sion tree, random forests and MLP and SVM is given in Figure 13. The highest
recognition accuracy is achieved by the SVM with GHI kerneli, which is signifi-
cantly greater than the one provided by other comparing classifiers at 0.05 signif-
icance level. The MLP and random forests gave accuracies higher than 80% while
the kNNs and decision tree gave lower accuracies. Although selecting a classifi-
cation model as the classifier depends on empirical results, for suggestion, SVM,
random forest and MLP should be firstly considered to be used with the proposed
features.
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Fig. 13 The performance of Multi-WHoID with eight classifiers. The results show mean recog-
nition accuracies (%) with standard deviation. The highest accuracy is significantly higher that
the others at 0.01 significant level.

4.7 Error analysis

To find the causes of the misclassifications, we looked into the images that were
falsely classified for more than 15 out of 30 cross-validation trials, 75% of which
consist of ICC samples misclassified as HCC. After closely inspecting the segmen-
tation and feature maps on these images, we found that they fall into one of the
following three categories.

1. Segmentation errors. Since U-Net was trained on a dataset that only contains
non-contrast and delayed phase, the model does not perform as well on images
in the other two phases. After examining the misclassified images, we found
that the lesions might be excluded from the segmentation when the lesions are
very close to the liver’s boundary. Two examples of such cases are shown in
Figure 14, where the ICC lesions are indicated by the arrows. Since the lesions
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are not only excluded from the segmentation but also the subsequent feature
analysis, the images will most likely be misclassified.

Fig. 14 Two examples of segmentation errors caused by the ICC lesion being close to the
liver’s boundary. The lesion areas are indicated by the arrows. Left: an image in portal venous
phase. Right: an image in arterial phase.

2. Unusual brightness in arterial phase. This is caused by human errors during
the image acquisition, either from incorrect settings in the viewer or the JPEG
conversion software. Examples of such cases are shown in Figure 15. Notice
that the feature maps of the arterial phase are covering the whole area. This
is because most of the liver have pixel values greater than the arterial-phase
threshold tA that we set in subsection 3.2. Consequently, most of the images
were retained from the binarization, causing errors in subsequent analyses.

non-contrast arterial portal venous

non-contrast arterial portal venous delayed

Fig. 15 Two examples of images with unusual brightness in the arterial phase. This causes
the feature maps to cover the whole liver area.

3. Barely visible lesions. Small lesions are very hard to detect in all contrast-
enhanced phases. An example is shown in Figure 16, where the ICC lesion is a
small blurry dot in the center (two other dots are cysts) that is barely visible
in the arterial and portal venous phase and hardly visible in non-contrast and
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delayed phase. We can see that the feature maps capture the lesion in the non-
contrast and arterial phase, but not in the portal venous and delayed phase.

non-contrast arterial portal venous delayed

Fig. 16 An example of misclassifications caused by a small and blurry ICC lesion. The
contrast-enhanced lesion is indicated by the arrows, and two other small dots are cysts.

5 Discussion

In this study, we designed several experiments in order to determine the best
settings for our two-step workflow. First, we focused on liver segmentation. The
results show that U-Net can be improved by (1) adding an instant segmentation
layer after every convolutional layer (2) using a combination between the DICE
loss and the weighted cross-entropy as our loss function and (3) post-processing
the segmentation with a conditional random field. This is because the differences
in contrast enhancement between the non-contrast/delayed phase images in the
segmentation dataset and arterial-portal venous phase images in the CMU HCC-
ICC dataset.

The segmented livers were then passed to the next experiments, in which we
tried to find suitable features and machine learning models for the HCC-ICC
classification. The results show that the Multi-WHoID, built from 64-bin color
intensity distributions, is the best feature descriptor, and the SVM with the GHI
kernel is the best classifier.
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The only previous work that studies the same problem as ours is [26], where
only images from portal venous phase were used. In this case, the tumor regions
were semi-automatically segmented under the supervision of radiologists and given
to SVM for classification between HCC and ICC. Compared to their method which
gives 69.70% test accuracy, our method which utilizes multi-phase images is able
to get higher test accuracy of 88%.

One of the advantages of our method is that it does not require as many labeled
images as a standard CNN model, since all of the heavy lifting is done by training
U-Net on the public data, and the classification is done by an SVM which is not
as data-hungry as deep learning models. This is beneficial in the field of medical
imaging where acquiring and labeling data are time-consuming. Compared to [37],
in which a standard CNN model for liver mass was trained with a much larger
sample of 1068 sets of images and gave 84% test accuracy, we only used 257 sets
and obtained 88% accuracy.

Another advantage of our method over pure deep learning methods is the in-
terpretability of the discriminative map, as shown in Figure 8. By automatically
highlighting highly discriminative regions, our method can be used to assist radi-
ologists for fast lesion tracking and help them make final diagnosis.

Our method can be applied to other lesion classification tasks, such as HCC
and cirrhosis, HCC and cysts or HCC and normal liver [28, 33, 37]. It is also
applicable to related problems that require some texture analysis. For example,
in the problem of liver graft hepatic steatosis assessment for liver transplant, our
multi-grid approach to feature extraction can be applied to liver images from RGB
cameras [27]. Alternatively, we can apply our entire workflow to multi-phase CT
scans of livers for automatic assessments [24]. Another task that utilizes multi-
phase liver images is the radioembolization therapy (RE), a locoregional therapy
for advanced-stage liver cancer, where the contrast-enhanced images are taken
pre- and post-treatment [1, 2, 3, 15, 34], on which our method can be applied to
evaluate the patient response to RE.

However, there can be some misclassifications due to various issues. First, seg-
mentation errors from the differences in contrast enhancement between the images
in the segmentation dataset and the CMU HCC-ICC dataset. This is because our
method of segmenting high-contrast images relies heavily on histogram matching
to “blur out” lesions, which does not always work on large lesions.Alternatively, we
could make U-Net adaptive to lesions by adding manually segmented data in high-
contrast phases to the training set. However, this approach can be quite costly,
both in increased training time and manual labors; to find the optimal number of
manually segmented images to be put in the training set, some experiments are
required.

The second issue is the unusual brightness in the arterial phase. This issue can
be fixed by obtaining more training data so that our threshold can be adjusted
accordingly. Alternatively, we can try to develop a new feature descriptor that is
invariant to brightness of the liver and retains the color intensity of the lesions.

Lastly, the images might be misclassified if the lesions are too small to be
detected from our feature descriptor. We believe that the nearby cysts might be
responsible since they are detected in Figure 16 in some of the phases. Hence,
the first step toward solving this issue is to “teach” our classification model to
differentiate between the cysts, HCC and ICC. If we follow this path, the feature
descriptor or the SVM model has to be modified in some way to achieve such goal.
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Another weakness of our method is that the model cannot handle a rare case
where an image contains both HCC lesions and ICC lesions. And it would be
fruitful to develop a model that can deal with such case. All in all, we think that
these possible improvements pose interesting but challenging problems that we
will look into in future studies.

6 Conclusion

In this paper, we propose an automatic two-step method of classifying two types
of liver cancer, namely HCC and ICC, from multi-phase abdominal CT scans.
In the first step, we segment the liver using a deep learning model U-Net with
instance segmentation and CRF post-processing. In the second step, we extract
the features based on pixel intensities of lesions, which differs across multi-phase
images between these two types of cancer. The features are then fed into a SVM
classifiers for the final prediction. As a result, we achieved well recognition accuracy
of over 88% in the HCC-ICC classification from CT images of the liver on CMU
HCC-ICC dataset. We believe that the proposed method has a great potential for
classification of liver cancers, which could become radiologists’ essential assist tool
for better planning of prevention and treatment strategies. In addition, we believe
that the integrated program will help the radiologists in varying levels of expertise
in diagnosis and classification of liver cancer.
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F, Sepulveda A, Soubrane O, Momi ED, Diaspro A, Cesaretti M (2018)
Computer-assisted liver graft steatosis assessment via learning-based texture
analysis. International Journal of Computer Assisted Radiology and Surgery
13(9):1357–1367, DOI 10.1007/s11548-018-1787-6

28. Nayak A, Baidya Kayal E, Arya M, Culli J, Krishan S, Agarwal S, Mehndiratta
A (2019) Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma
using multi-phase abdomen ct. International Journal of Computer Assisted
Radiology and Surgery 14(8):1341–1352, DOI 10.1007/s11548-019-01991-5

29. Ohishi W, Fujiwara S, Cologne JB, Suzuki G, Akahoshi M, Nishi N, Tsuge M,
Chayama K (2011) Impact of radiation and hepatitis virus infection on risk
of hepatocellular carcinoma. Hepatology 53(4):1237–1245, DOI 10.1002/hep.

https://cebp.aacrjournals.org/content/19/8/1893
https://cebp.aacrjournals.org/content/19/8/1893.full.pdf
https://cebp.aacrjournals.org/content/19/8/1893.full.pdf


Classification of HCC-ICC Based on Multi-phase CT scans 27

24207
30. Rimola J, Forner A, Reig M, Vilana R, de Lope CR, Ayuso C, Bruix J

(2009) Cholangiocarcinoma in cirrhosis: Absence of contrast washout in de-
layed phases by magnetic resonance imaging avoids misdiagnosis of hepatocel-
lular carcinoma. Hepatology 50(3):791–798, DOI 10.1002/hep.23071

31. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for
biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi
AF (eds) Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, Springer International Publishing, Cham, pp 234–241

32. Sangiovanni A, Manini MA, Iavarone M, Romeo R, Forzenigo LV, Fraquelli
M, Massironi S, Della Corte C, Ronchi G, Rumi MG, Biondetti P, Colombo
M (2010) The diagnostic and economic impact of contrast imaging techniques
in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut 59(5):638–
644, DOI 10.1136/gut.2009.187286

33. Sato M, Morimoto K, Kajihara S, Tateishi R, Shiina S, Koike K, Yatomi
Y (2019) Machine-learning approach for the development of a novel predic-
tive model for the diagnosis of hepatocellular carcinoma. Scientific Reports
9(1):7704, DOI 10.1038/s41598-019-44022-8

34. Spina JC, Hume I, Pelaez A, Peralta O, Quadrelli M, Monaco RG (2019)
Expected and unexpected imaging findings after 90y transarterial radioem-
bolization for liver tumors. RadioGraphics 39(2):578–595, DOI 10.1148/rg.
2019180095, URL https://doi.org/10.1148/rg.2019180095

35. Tomimatsu M, Ishiguro N, Taniai M, Okuda H, Saito A, Obata H, Yamamoto
M, Takasaki K, Nakano M (1993) Hepatitis c virus antibody in patients
with primary liver cancer (hepatocellular carcinoma, cholangiocarcinoma,
and combined hepatocellular-cholangiocarcinoma) in japan. Cancer 72(3):683–
688, DOI 10.1002/1097-0142(19930801)72:3〈683::AID-CNCR2820720310〉3.0.
CO;2-C

36. Welzel TM, Graubard BI, ElSerag HB, Shaib YH, Hsing AW, Davila JA,
McGlynn KA (2007) Risk factors for intrahepatic and extrahepatic cholan-
giocarcinoma in the united states: A population-based case-control study.
Clinical Gastroenterology and Hepatology 5(10):1221 – 1228, DOI https:
//doi.org/10.1016/j.cgh.2007.05.020

37. Yasaka K, Akai H, Abe O, Kiryu S (2018) Deep learning with convolu-
tional neural network for differentiation of liver masses at dynamic contrast-
enhanced ct: A preliminary study. Radiology 286(3):887–896, DOI 10.1148/
radiol.2017170706

https://doi.org/10.1148/rg.2019180095

	Introduction
	Materials
	Proposed method
	Results
	Discussion
	Conclusion

