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Abstract—Anomaly detection has emerged as a popular tech-
nique for detecting malicious behaviors in local area networks
(LANs). Various aspects of LAN anomaly detection have been
widely studied. Nonetheless, the privacy concern about individual
users or their relationship in LAN has not been thoroughly
explored in the prior work. In some realistic cases, the anomaly
detection analysis needs to be carried out by an external party,
located outside the LAN. Thus, it is important for the LAN
admin to release LAN data to this party in a private way in
order to reveal no information about LAN users; at the same
time, the released data must also preserve the utility of being
able to detect anomalies. This paper investigates the possibility
of privately releasing ARP data that can later be used to identify
anomalies in LAN. We present two approaches and show that
they satisfy different levels of differential privacy – a rigorous
and provable notion for quantifying privacy loss in a system.
Our real-world experimental results confirm practical feasibility
of our approaches. With a proper privacy budget, both of our
approaches preserve more than 90% utility of the released data.

I. INTRODUCTION

Security of local area networks (LANs) has been getting
more attention in the last few decades. Traditional LAN
defense mechanisms based on a firewall are no longer effective
in preventing malware infection since malware can circumvent
the firewall and infect the network through other means. A
prominent example is the recent emergence of ransomware
that can infect LAN devices via phishing attacks; these attacks
remain effective even if the LAN’s firewall is active and
configured correctly. In addition, with the rise of the Internet-
of-things (IoT), the so-called “smart” devices have become
widely popular and, at the same time, are also extremely
vulnerable to malware attacks. These devices may be infected
from the outside world and introduce malware to the LAN.
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Several anomaly detection techniques have been proposed to
detect malicious activities in LAN. Among those, techniques
based on the Address Resolution Protocol (ARP) are shown to
be promising in detecting LAN anomalous behaviors without
requiring a change to existing devices [6], [11], making them
suitable for the current IoT networks.

Despite this success, there still remains a severe privacy
concern to LAN users, which has not been explored in the
previous work. Often times, the anomaly detection must be
performed by an entity outside of LAN or third-party software.
Thus, it is equally important to ensure privacy of the data
exposed to this external, potentially malicious, entity. For in-
stance, a LAN admin in an enterprise may choose to outsource
an anomaly detection analysis to an external widely-popular
service, e.g., [7], or the admin simply wants to publicly release
some features of network data for transparency or academic
purposes. In either case, it would require the LAN admin
to output network data (which is an input to the anomaly
detection algorithm) to an untrusted party. Doing so may lead
to having such party learn privacy-sensitive information about
the LAN users, e.g., presence of a specific LAN user.

While it is possible to simply erase all user’s sensitive
information (e.g., IP/MAC addresses) from the output data,
this kind of technique does not provide strong and provable
privacy guarantees. A motivated adversary may still be able
to deanonymize users through other means, e.g., via a side-
channel [8] analysis. Therefore, there is a need for a technique
with rigorous privacy guarantees, while preserving the utility
of detecting anomalies in the LAN environment.

In this paper, we present two approaches to releasing ARP
data for LAN anomaly detection, with mathematically proven
privacy guarantees. The first approach guarantees a weak
definition of differential privacy [1], allowing to be used in
scenarios where a strong privacy guarantee is not required;
whereas, the second approach requires a slightly higher value
of a privacy budget parameter (ε) in order to attain stronger978-0-7381-1127-8/21/$31.00 c©2021 IEEE



privacy protection. We study the practicality of our approaches
on a real-world dataset, which confirms that with a proper
privacy budget, both of our approaches preserve the utility by
more than 90%.

We envision that our approaches will be especially useful
in a scenario where ARP data collected from a large-scale
network needs to be made publicly available. As a real-world
example, one of the on-going ASEAN IVO projects, called
ASEAN-Wide Cyber-Security Research Testbed project, aims
to: (1) capture network data from LANs across the ASEAN
region, (2) determine malware behaviors based on the captured
data and (3) make the captured data sharable in the public
domain. Our approaches will greatly contribute to this project
as a mechanism to ensure privacy protection of the released
ARP data captured in the ASEAN region.

II. RELATED WORK

To the best of our knowledge, there has been no prior work
proposing a method for releasing ARP data that can be used
for anomaly detection with differential privacy guarantees in
the LAN setting. However, some previous work has been done
under different conditions or different settings, e.g., social
network [9], web browsing [3], or syndrome surveillance [4].

There are a number of existing research that aims to detect
anomalies in LAN without providing privacy protection. The
work in [12] proposes a framework to monitor a network
traffic and detect anomalies in the Wireless LAN (WLAN)
environment via the IEEE 802.11 MAC protocol. Nonetheless,
this approach is specific to wireless LAN and thus cannot be
directly applied to the wired LAN setting. Our approaches are
based on ARP requests, making them suitable for both wired
and wireless LAN environments.

Several prior work focuses on detecting LAN anomalies
based on ARP-related data. Whyte et al. [10] propose an
anomaly detection approach that distinguishes anomalous be-
haviors through statistical analyses of ARP traffic. Yasami
et al. [11] propose to model normal ARP traffic behaviors
using Hidden Markov Model (HMM). Matsufuji et al. [6]
present an anomaly detection algorithm based on the degree
of destination in ARP requests.

III. PRELIMINARIES

A. Problem Statement

In this work, we consider a setting in which an entity,
called Admin, possesses a LAN consisting of n User-s (i.e.,
computing devices). In addition, Admin introduces a moni-
toring device to this LAN in order to observe ARP requests
of all User-s. We denote Vjk to be aggregate ARP requests
originated from User k, measured and accumulated at the jth

interval. In this work, we assume the time interval to be in
a unit of “a week” but our approaches are also applicable
for any fixed interval (e.g., an hour, a day, a month, etc.). Vj

is denoted the result after appending all ARP requests of all
User-s generated in week j, i.e. Vj = {Vj1, Vj2, ..., Vjn}.

As shown in Figure 1, our target scenario starts by hav-
ing the monitoring node (periodically) send aggregate ARP

Fig. 1. Scenario considered in this work

requests – V = {V1, ..., Vt} – to Admin, corresponding to
step ¶ in Figure 1. Admin is interested in learning whether
the LAN as a whole has had any anomalous behaviors for the
last t weeks in a private way. Thus, in step ·, he proceeds to
apply a certain algorithm with the goal of privatizing V and
then releases the result D to an external entity Analyst. In step
¸, Analyst in turn performs an anomaly detection analysis on
D and returns the result O back to Admin. O contains Oi

that allows Admin to identify whether the LAN contains an
anomaly at week i.
Threat Model: Analyst is assumed to be honest-but-curious,
i.e, he always honestly applies an anomaly detection algorithm
on any given input data and returns the correct output to
Admin. However, during the process, he may want to learn
sensitive information about User-s or their relationship, and
use it for his own benefits.
Goal & Scope: The goal of this work is to design approaches
that can be appropriately used in step · of Figure 1. In other
words, our approaches must allow the process of releasing
ARP data with some levels of provable privacy guarantees. Be-
sides privacy, utility of the privatized/released data for anomaly
detection is also important. We must ensure that the privatized
value does not change by a significant amount, compared
to the non-privatized counterpart; otherwise, it will not be
useful in detecting anomalies. However, exact algorithms for
determining anomalies (i.e., in step ¸) are out of scope.

B. Differential Privacy

Consider a setting in which there are n users who send
individual data to a trusted curator. The curator then applies
an algorithmM and outputs these results to an untrusted party.
In a strong notion of privacy, the data of an individual must
be kept private from strong adversaries – even ones who get
a hand on the data of the other users.

The differential privacy (DP) is a probabilistic viewpoint
of this notion given in a seminal paper by Dwork, McSherry,
Nissim, and Smith [1]. First, we say that two datasets X and
X ′ are neighboring if they differ by exactly one entry. The
differential privacy is then satisfied if changing X to X ′ does
not change the probability of observing an output of M by
very much.



Definition 1 (Differential Privacy). An algorithm M : X →
Y satisfies ε-differential privacy (ε-DP) if, for every pair of
neighboring datasets X and X ′ and every subset S ∈ Y ,

P (M(X) ∈ S) ≤ eεP (M(X ′) ∈ S) .

where ε is referred as a privacy budget. Intuitively, a smaller
value of ε leads to a stronger privacy guarantee. Conversely,
a higher value of ε implies a weaker guarantee with possibly
better utility/accuracy of the released data.

One useful property is the preservation of differential pri-
vacy under post-processing.

Proposition 1 (Post-processing [2]). For any ε-DP algorithm
M : X → Y and arbitrary random function f : Y → Z , the
algorithm f ◦M is ε-DP.

To introduce one of the most ubiquitous ε-DP algorithm,
we start with the `1-sensitivity of a randomized algorithmM :
X → Rk, which is the maximum `1 change in the output as a
result of modifying a single datum. We denote this sensitivity
as ∆M, and formally define it as:

∆M = max
neighbor X,X′

‖M(X)−M(X ′)‖1.

Theorem 1 (Laplace mechanism [2]). Let M : X → Rk be
an algorithm with sensitivity ∆M and Yi be a noise generated
by sampling from a Laplace distribution with scale = ∆M/ε,
i.e., Yi ∼ Laplace(∆M/ε), then the randomized algorithm A
defined by

A(X) =M(X) + (Y1, . . . , Yk)

is ε-DP.

C. Differential Privacy of ARP-Request data

Fig. 2. Illustration of a LAN with 3 User-s and 4 ARP requests (arrows).

To understand privacy (i.e., what concrete information needs
to be private and hidden from Analyst) in our target scenario,
we first describe the characteristic of ARP-request data. Fig-
ure 2 illustrates an example of a LAN that consists of 3 User-s
producing 4 ARP requests over a specific time interval. We
define the (ARP-request) “degree” of User j as the number of
User-s that receive ARP requests from User j. In the above
example, that the degrees of User 1, 2 and 3 are 2, 2 and 0,
respectively. Using this definition, we can view Vj – aggregate
ARP-request data at week j – as a directed graph, where
User can be represented by a node; whereas an arrow (or a
directed edge) from node s to node r indicates ARP request(s)
generated by User s and sent to User r. The degree of User j

Algorithm 1: Naı̈ve Approach
Input: V = {V1, V2, ..., Vt}, t, ε
Output: D = {D1, D2, ..., Dt}

1 for j = 1 to t do
2 Dj ← SUM(DEGREE(Vj))
3 Dj ← Dj + Laplace(t/ε)
4 end

is then equivalent to the number of directed edges originating
from User j.

As a directed graph, Vj can not be used to represent a
database entry, required by Definition 1. Thus, the afore-
mentioned notion of differential privacy does not accurately
capture the privacy guarantee in our scenario. Fortunately,
there has been a prior work focusing on expressing differential
privacy of a graph database. Specifically, the work in [5]
presents notions of differential privacy between graphs by first
defining two types of neighboring graphs: two graphs are edge-
neighboring if they differ by a single edge, and they are node-
neighboring if they differ by a single node.

Definition 2 (Edge-Differential Privacy [5]). Let G be the set
of graphs between users. An algorithm M : G → Y satisfies
ε-edge-differential privacy (ε-edge-DP) if, for every pair of
edge-neighboring graphs G and G′ and every subset S ⊆ Y ,

P (M(G) ∈ S) ≤ eεP (M(G′) ∈ S) .

Since an edge in our scenario refers to ARP requests
between a pair of User-s, Definition 2 provides privacy pro-
tection for these ARP requests. This means that an algorithm
satisfying ε-edge-DP is guaranteed to reveal no information
about all ARP requests exchanged between any pair of User-
s, resulting in hiding the ARP relationship of all User-s. This,
for example, could hide the source of infection in LAN as it is
common for malware to use ARP as the first step to discover
and infect other User-s.

Nonetheless, the guarantee provided by Definition 2 is not
strong enough to provide privacy of individual User-s. To
achieve this guarantee, we adopt the following definition:

Definition 3 (Node-Differential Privacy [5]). Let G be the set
of graphs between users. An algorithm M : G → Y satisfies
ε-node-differential privacy (ε-node-DP) if, for every pair of
node-neighboring graphs G and G′ and every subset S ⊆ Y ,

P (M(G) ∈ S) ≤ eεP (M(G′) ∈ S) .

Indeed, by removing a node we also have to remove all
of its edges. One then has that ε-node-DP is stronger than ε-
edge-DP. In our scenario, an algorithm satisfying ε-node-DP
guarantees no information leakage about presence or absence
of any individual User.

IV. NAÏVE APPROACH

The naı̈ve approach is summarized in Algorithm 1. In the
rest of this section, we discuss non-trivial details of this
approach and show that it indeed satisfies ε-edge DP.



Let Vj ∈ G be the directed graph of ARP requests in week
j. Let M be the algorithm that computes the weekly total
degrees and Dj =M(Vj) (Line 2 of Algorithm 1), which also
corresponds to the total number of edges in Vj . To preserve ε-
edge-DP of each User’s ARP requests, one can simply use the
Laplace mechanism. To do so, we need to find an upper bound
of the sensitivity ∆M. Let V ′j be an edge-neighboring graph
of Vj in week j and D′j =M(V ′j ) . Then, |Dj−D′j | ≤ 1 and
we have

∆M ≤
t∑

j=1

|Dj −D′j | ≤ t.

Therefore, the ε-node DP is guaranteed under the following
Laplace mechanism A:

A(Vj) = Dj + Yj ,

where Yj ∼ Laplace(t/ε) (Line 3). To prevent excessive
information loss, one needs the Laplace noise to be smaller
than Dj , i.e., t/ε < E[Dj ] or ε > t/E[Dj ]. This can be
achieved in realistic settings, e.g., ε = 2 in our experiment
(Section VI) where t = 30 and the lower quartile of Dj is 20.

On the other hand, a similar analysis for the ε-node-DP
results in much bigger Laplace noises; consider two node-
neighboring directed graphs Vj , V

′
j of n users. The degrees

Dj , D
′
j defined as above satisfy |Dj − D′j | ≤ n, which

cannot be improved further. Thus, in order to employ the
Laplace mechanism, the noises have to be sampled from
Laplace(tn/ε). In contrast to the edge-DP regime, the scale
of the noise comes with a factor of n. As a result, for a large
number of User-s, it is no longer feasible to preserve both
privacy and utility at the same time.

V. HISTOGRAM-BASED APPROACH

As seen in the previous section, the naı̈ve approach can
not be used to satisfy ε-node-DP in practice due to its high
sensitivity, leading to too strong added noises which in turn
significantly lowering utility of the released data. Instead, we
propose a second approach utilizing a histogram that helps
reduce the ε-node-DP sensitivity to a reasonable amount.

Our approach is shown in Algorithm 2. The rationale behind
this approach is to transform the degree data in such a way that
the sensitivity is minimized when any User is removed from
Vj . Naturally, a histogram is a good fit for this approach since
it provides a way to partition data into discrete groups/bins,
where each bin in this case represents a range of degrees.
Thus, this approach first computes the degrees of each User
in a specific week and uses this degree data to construct a
histogram, as shown in Line 2 of Algorithm 2. This histogram
data minimizes the ε-node-DP sensitivity because removing a
User from the histogram data affects only one bin, i.e., the
one this User belongs, and it only decreases its bin count by
one; other histogram bins are unaffected by this change. We
then can apply the Laplace mechanism on each bin (Line 3-5).
Finally, we compute and release the lower bound of the sum
of degrees from the noisy histogram in Line 8.

Algorithm 2: Histogram-based Approach
Input: V = {V1, V2, ..., Vt}, t, ε
Output: D = {D1, D2, ..., Dt}

1 for j = 1 to t do
2 Hj ← HISTOGRAM(DEGREE(Vj))
3 foreach bin ∈ Hj do
4 bin.count← bin.count+ Laplace(t/ε)
5 end
6 end
7 for j = 1 to t do
8 Dj ←

∑
bin∈Hj

(bin.count× bin.low)

9 end

We now formally show that the histogram-based approach
satisfies ε-node-DP.

Theorem 2. The histogram-based approach as described in
Algorithm 2 is ε-node-DP.

Proof. Let Vj and V ′j be node-neighboring directed graph
at time j, i.e., V ′j can be obtained from Vj by adding or
removing a single node. Let M : G → Rk be the algorithm
that computes the histogram of the degrees, i.e., the entries
of M(Vj) and M(V ′j ) are the count of nodes by their
degrees. Then M(Vj) and M(V ′j ) differ by one in the entry
corresponding to the degree of User j, who only exists in
either Vj or V ′j . Therefore, |M(V )−M(V ′j )| ≤ 1. It follows
that

∆M ≤
t∑

j=1

|M(V )−M(V ′j )| ≤ t.

Observe that the first for loop (Line 1-6) in Algorithm 2 can
be written as a randomized algorithm A : G → Rk defined by

A(G) =M(G) + (Y1, . . . , Yk),

where Yi ∼ Laplace(t/ε). It follows from Theorem 1 that A
is ε-node-DP.

Then, we denote the second for loop (Line 7-9) in Algo-
rithm 2 as f . By Proposition 1, we have the histogram-based
approach, which is defined as f ◦ A, is also ε-node-DP.

VI. EVALUATION

A. Experimental Setup

To assess utility of the proposed approaches, we collected
ARP requests generated by our lab network from August 9,
2019 to March 6, 2020. As mentioned in Section III-A, this
collection is performed by introducing a small monitoring
device to our LAN. We implement the monitoring device atop
of a raspberry Pi 3B.

In the context of differential privacy, the utility metric is
generally defined as a relative error between the released
privatized values z and the non-privatized aggregates z∗. We
adopt a similar approach and select the root-mean-square error
(RMSE) as our utility metric:



RMSE =

√√√√ 1

n

n∑
i=1

(
z[i]∗ − z[i]

z∗[i]

)2

where z[i] and z∗[i] represent the ith data-point in z and z∗,
respectively. For our proposed approaches, z∗[i] corresponds
to the (estimated) sum of all User’s ARP degrees observed in
week i, while z[i] refers to the privatized output on the same
ARP data.

B. Parameter Selection

As we collected ARP requests from 328 User-s over a 30-
week period, t = 30, n = 328. The naı̈ve approach involves
with no other parameters. Meanwhile, the histogram-based
approach consists of two additional parameters: the number
of bins and the width of each bin. Intuitively, a larger number
of bins leads to smaller bin counts. In such case, the Laplace
noise injected by the histogram-based approach would become
too large, severely hurting utility of the released data.

To avoid this problem, we select the number of histogram
bins to be a relatively small number: 3. Specifically, we choose
the first two bins to correspond to the number of User-s whose
degree is 1 and 2, respectively; the third bin contains the
number of User-s with degree ≥ 3.

C. Results
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Fig. 3. RMSE in % (y-axis) vs ε values (x-axis), avg over 100 runs.

Figure 3 shows the impact of ε on the utility of the proposed
approaches. For the naı̈ve approach, to preserve > 90% utility,
ε can be as low as 2. On the other hand, ε in the histogram-
based approach must be ≥ 10 in order to retain the same
amount of utility. A higher value of ε is needed in the second
approach in order to satisfy the stronger privacy guarantee, i.e.,
ε-node DP; whereas, the naı̈ve approach can not realistically
support ε-node DP. The same figure also shows the error rate
when we adapt the naı̈ve approach to support ε-node-DP by
increasing the sensitivity from t to tn. As expected, the error
becomes extremely large, limiting the utility of the released
data; at the same value of ε, RMSE of the naı̈ve approach with
ε-node-DP is > 40 times larger than that of the histogram-
based approach.

Figure 4 illustrates the comparison between the released
(privatized) data by the histogram-based approach and the non-
privatized aggregates. Their RMSE is around 10%, resulting in
≈ 90% utility. Despite a slight difference in value, the released
data still preserves the same pattern as the non-privatized
aggregates. As seen in Figure 4, both types of data indicate a
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Fig. 4. Original (non-privatized) data vs released (privatized) data produced
by the histogram-based approach with ε = 10

spike at week 8, which may be used to conclude an existence
of an anomaly.

VII. CONCLUSION

This paper presents two approaches to privately releasing
ARP-request data that can later be used for identifying anoma-
lies in LAN. We prove that the naı̈ve approach satisfies edge-
differential privacy, and thus provides privacy protection on the
user-relationship level. On the other hand, the histogram-based
approach comes with a more expensive privacy budget but can
provide node-differential privacy, thus leaking no information
about a presence of each individual user. Feasibility of our
approaches is demonstrated via a real-world experiment; both
of our approaches are shown to preserve more than 90% utility
of the released data.
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