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Preface

These are lecture notes that I wrote for the masters course Linear Statistical
Models (208780) in Winter 2022.

After teaching statistics for a couple of years, I observed that many of our
masters students lack the programming skills needed to apply what they learn
in class to solve real-world problems. This motivated me to redesign the course
to be more practice-oriented, featuring full hands-on code examples in R.

The first two sections of the notes closely follow the comprehensive textbook
Linear Regression and Other Stories (Gelman, Hill, and Vehtari 2020). This
excellent book covers all aspects of linear regression, including fitting, prediction,
diagnostics, and practical issues that may arise. Moreover, the book features
numerous coding examples throughout its content.

The third section covers causal inference, which mainly focuses on estimation
of the effect of a treatment on an outcome. We shall see that, with careful
experimental design and covariate “adjustment”, causal questions can be an-
swered using linear regression. The lecture notes for this section again follow
the materials in Gelman, Hill, and Vehtari (2020). Additional topics such as
tests for assumptions, panel data, and synthetic control follow the materials in
Cunningham (2021), Huntington-Klein (2021) and Facure (2020).

The last section covers conformal prediction, which is a relatively new technique
of constructing a prediction interval under minimal statistical assumptions. The
materials in this section closely follow the lecture notes of Stats 300C taught
by Emmanuel Candes at Stanford University (Candès 2022) and the references
therein.

Any comments and suggestions are welcome (my homepage).
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Part I

Linear regression
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In this course, we will use linear regression as a building block to develop more
complex tool study the relationship between variables. Since its first conception
in Sir Francis Galton’s work on heredity characteristics in 1886, linear regression
had been extensively studied for its statistical properties and interpretation.

We will discuss these properties of linear regression in close detail, starting with
model fitting and how to interpret the coefficients of the fitted model. Using
the Bayesian framework, we will learn how to quantify uncertainties from the
posterior distributions, and diagnose the model’s fit via plotting and simulations.
We will also cover several topics in model selection, which include variable and
prior selection, illustrated with coding examples in R.
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Chapter 1

Basic regression

We start with the basics of Bayesian regression on simulated data. We will go
over the steps to in order to obtain the coefficient estimates, as well as their
uncertainties. First, we load the rstanarm package, an R package for Bayesian
regression modeling which we will use throughout the course.

library("rstanarm")

1.1 Simulation
Simulate data as follows:

𝑥 = 1, 2,… , 20 (1.1)
𝑦 = 0.2 + 0.3𝑥 + 𝜖 (1.2)
𝜖 ∼ 𝑁(0, 0.5) (1.3)

x <- 1:20
n <- length(x)
a <- 0.2
b <- 0.3
sigma <- 0.5
y <- a + b*x + sigma*rnorm(n)

fake <- data.frame(x, y)

Plot the data
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plot(fake$x, fake$y, main="Data")
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Fit a regression model with stan_glm

fit_1 <- stan_glm(y ~ x, data=fake)

Here, the result shows the estimated coefficients with the uncertainties (the
standard errors). It also estimates 𝜎.

print(fit_1, digits=2)

stan_glm
family: gaussian [identity]
formula: y ~ x
observations: 20
predictors: 2

------
Median MAD_SD

(Intercept) 0.43 0.19
x 0.29 0.02

Auxiliary parameter(s):
Median MAD_SD

sigma 0.42 0.07
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------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Plot the data with the fitted regression line

plot(fake$x, fake$y, main="Data and fitted regression line")
a_hat = coef(fit_1)[1]
b_hat = coef(fit_1)[2]
abline(a_hat, b_hat)
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7
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Here are the summary of the parameters.

Parameter Assumed value Estimate Uncertainty
𝑎 0.2 0.55 0.26
𝑏 0.3 0.28 0.02
𝜎 0.5 0.54 0.09

From the properties of the standard normal distribution, for 68% of the time
the true intercept 𝑎 is between 0.55−0.26 = 0.29 and 0.55+0.26 = 0.81, and for
95% of the time it is between 0.55 − 2× 0.26 = 0.03 and 0.55 + 2× 0.26 = 1.07.
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1.2 Earnings data

earnings <- read.csv("data/earnings.csv")

Fit a regression model

fit_2 <- stan_glm(earnk ~ height + male, data=earnings)

print(fit_2)

stan_glm
family: gaussian [identity]
formula: earnk ~ height + male
observations: 1816
predictors: 3

------
Median MAD_SD

(Intercept) -26.0 11.8
height 0.6 0.2
male 10.6 1.5

Auxiliary parameter(s):
Median MAD_SD

sigma 21.4 0.3

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The fitted model is:

earnings = −25.7 + 0.6 ∗ height+ 10.6 ∗male+ error.

How should we interpret the coefficients here? Let’s look at the following sug-
gestions:

1. If we were to increase someone’s height by one inch, his or her earning
would increase by an expected amount of $600.

2. Comparing two people with the same sex but one inch different in height,
the average difference in earnings is $600.

Between these two choices, the latter is more sensible. Comparison is a safer
interpretation of the coefficient than the effect.
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Similarly, it is more appropriate to say that, comparing two people with the
same height but different sex, the man’s earnings will be $10600 more than the
woman’s on average.

1.3 Historical origins of regression
The term regression comes from Francis Galton, a quantitative social scientist,
who fit linear models to understand parent-child height relationship. He noticed
that:

1. Children of tall parents tended to be taller than average but less tall than
the parents.

2. Children of shorter parents tended to be shorter than the average but less
short than the parents.

Thus, over time, people’s heights have regressed to the mean, hence the term
regression.

Let’s look at the data of people’s heights published by Karl Pearson and Alice
Lee in 1903.

heights <- read.table("data/Heights.txt", header=TRUE)
print(heights[1:5,])

daughter_height mother_height
1 52.5 59.5
2 52.5 59.5
3 53.5 59.5
4 53.5 59.5
5 55.5 59.5

Now we fit a regression model to the data.

fit_3 <- stan_glm(daughter_height ~ mother_height, data=heights)

print(fit_3)

stan_glm
family: gaussian [identity]
formula: daughter_height ~ mother_height
observations: 5524
predictors: 2

------
Median MAD_SD

(Intercept) 29.8 0.8
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mother_height 0.5 0.0

Auxiliary parameter(s):
Median MAD_SD

sigma 2.3 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Let’s plot the data and the regression line.

plot(heights$mother_height, heights$daughter_height, main="Data and the fitted regression line")
a_hat = coef(fit_3)[1]
b_hat = coef(fit_3)[2]
abline(a_hat, b_hat)
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Let’s take a look at the average of daughters’ and mothers’ heights.

print(mean(heights$daughter_height))

[1] 63.85626

print(mean(heights$mother_height))

[1] 62.49873
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The equation of the regression line is

𝑦 = 29.8 + 0.5𝑥 + error

The line’s slope of 0.5 is easy to interpret—adding one inch to the mother’s
height corresponds to an increase in the daughter’s height by 0.5 inches.

If the mother’s height is 70 inches, then the daughter’s height is 64.8 on average,
so the daughter is less tall than the mother’s but still taller than the average.

If the mother’s height is 50 inches, then the daughter’s height is 54.8 on average,
so the daughter is less short than the mother’s but still shorter than the average.

Looking back at the equation, we see < 1 coefficient which reduces variation of
the daughters’ heights, while the error term adds to the variation.

1.4 How regression to the mean can confuse peo-
ple

Sometimes regression to the mean can lead people to mistakenly attribute it to
causality. Here’s a simulation of midterm and final scores of a group of students.
Each score is composed of two components: the student’s true ability and a
random noise.

n <- 1000
true_ability <- rnorm(n, 50, 10)
noise_1 <- rnorm(n, 0, 10)
noise_2 <- rnorm(n, 0, 10)
midterm <- true_ability + noise_1
final <- true_ability + noise_2
exams <- data.frame(midterm, final)

fit_4 <- stan_glm(final ~ midterm, data=exams)

print(fit_4)

stan_glm
family: gaussian [identity]
formula: final ~ midterm
observations: 1000
predictors: 2

------
Median MAD_SD

(Intercept) 24.8 1.4
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midterm 0.5 0.0

Auxiliary parameter(s):
Median MAD_SD

sigma 12.3 0.3

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

plot(midterm, final, xlab="Midterm score", ylab="Final score")
abline(coef(fit_4))
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One might infer from the coefficient of 0.5 that the students who did well on the
midterm got overconfident and slacked off before the final, and the students who
did poor on the midterm were motivated and tried extra hard for the final. But
we know that this is not the case, as we generated this data ourselves! The real
reason behind the regression to the mean is the variation between the midterms
and the final scores: a student who scores very well on the first midterm (e.g. the
two students with ~100 midterms score on the far right) are likely to have a high
level of skill, and also was very lucky at the midterm (i.e. large positive noise)
and so in the final exam, the student performs better than average but worse
than on the midterm.
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Chapter 2

Linear regression with a
single predictor

As usual, we load the rstanarm package.

library("rstanarm")

2.1 Predicting presidential vote share from the
economy

We will load the data from hibbs.dat which was created by Douglas Hibbs
to forecast elections based on economic growth. Two important variables are:
growth, the economic growth in the previous year and vote, the incumbent
party’s vote percentage.

hibbs <- read.table("data/hibbs.dat",
header=TRUE)

head(hibbs, 5)

year growth vote inc_party_candidate other_candidate
1 1952 2.40 44.60 Stevenson Eisenhower
2 1956 2.89 57.76 Eisenhower Stevenson
3 1960 0.85 49.91 Nixon Kennedy
4 1964 4.21 61.34 Johnson Goldwater
5 1968 3.02 49.60 Humphrey Nixon

Plot the data
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plot(hibbs$growth, hibbs$vote, xlab="Economic growth",
ylab="Incumbent party's vote share")
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Fit a regression model with stan_glm:

M1 <- stan_glm(vote ~ growth, data=hibbs,
refresh=0) # suppress output

Display the model:

print(M1)

stan_glm
family: gaussian [identity]
formula: vote ~ growth
observations: 16
predictors: 2

------
Median MAD_SD

(Intercept) 46.3 1.8
growth 3.0 0.7

Auxiliary parameter(s):
Median MAD_SD

sigma 3.9 0.7

------

20



* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The fitted line is

𝑦 = 46.3 + 3.0𝑥.

Plot the fitted regression line:

plot(hibbs$growth, hibbs$vote, xlab="Economic growth",
ylab="Incumbent party's vote share")

abline(coef(M1))
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• At 𝑥 = 0 (zero economic growth), the incumbent party is predicted to
receive 46.3% of the votes. This makes sense, as people are less likely to
vote a party with poor performance.

• Every 1% of economic growth corresponds to an expected 3.0% increase
in vote share for the incumbent party.

• The 68% confidence interval of the slope is [3.0 ± 0.7] = [2.3, 3.7] and the
95% confidence interval is [3.0 ± 2 × 0.7] = [1.6, 4.4]. It would be very
unlikely that the data is generated from a model whose true slope is 0.

• The estimated residual standard deviation (the standard deviation of the
error term) is 3.9%. This means that roughly 68% of the true vote per-
centages fall within ±3.9 of the regression line.
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2.1.1 Predicting the 2008 election
In the years leading up to the 2008 election, the economic growth was approxi-
mately 0.1% or 𝑥 = 0.1. The linear model, 𝑦 = 46.3 + 3.0𝑥, predicted 𝑦 = 46.6,
or 46.6% of the vote going to the incumbent party, which was the Republicans
at that time. It thus predicts 53.4% for Barack Obama, implying Democrats’
victory in 2008.

2.1.2 Predicting the 2016 election
We now use the model to predict the 2016 presidential election of Democrat
Hillary Clinton vs. Republican Donald Trump. At that time, the economic
growth was approximately 2%. The linear model predicted

46.3 + 3.0 × 2.0 = 52.3.

In other words, the model predicted that Clinton would have won the 2016
election, when in fact the winner was actually Trump.

Maybe we should have taken the uncertainty into account as well. We could ask
ourselves: what is the chance that Clinton would win in that year? To answer
this question, we recall that our model also has the error term:

𝑦 = 46.3 + 3.0𝑥 + 𝜀, 𝜀 ∼ 𝒩(0, 3.9).

Plugging in $x=2.0$ yields a random variable 𝑦:

𝑦 = 46.3 + 3.0 × 2.0 + 𝜀 = 52.3 + 𝜀 ∼ 𝒩(52.3, 3.9).

The distribution of 𝑦 is shown below. Clinton would have won if the vote share
is greater than 50%. Thus the probability of Clinton winning the election is
Pr[𝑦 > 50] = 0.72.
The shaded area can be computed using the following code:

1-pnorm(50, 52.3, 3.9)

[1] 0.7223187

2.2 Checking the model’s fit via simulation
We will demonstrate how to check the model’s fit using the elections data above.
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Figure 2.1: Forecast distribution

2.2.0.1 Step 1: Creating parameters from the fitted model

a <- 46.3
b <- 3.0
sigma <- 3.9
x <- hibbs$growth
n <- length(x)

2.2.0.2 Step 2: Simulating fake data

y <- a + b*x + rnorm(n, 0, sigma)
fake <- data.frame(x, y)

2.2.0.3 Step 3: Fitting the model and comparing fitted to assumed
parameters

fit <- stan_glm(y ~ x, data=fake, refresh=0)
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print(fit)

stan_glm
family: gaussian [identity]
formula: y ~ x
observations: 16
predictors: 2

------
Median MAD_SD

(Intercept) 47.1 1.5
x 2.7 0.7

Auxiliary parameter(s):
Median MAD_SD

sigma 3.5 0.7

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The estimated coefficients (48.5 and 2.0) seem close enough to the assumed true
values (46.3 and 3.0).

We can compare the coefficients formally by checking if the true values falls
within 68% and 95% confidence intervals of the estimated coefficients. For
simplicity, we will only do this for the slope 𝑏.

b_hat <- coef(fit)["x"]
b_se <- se(fit)["x"]
print(b_hat)

x
2.656575

print(b_se)

x
0.6575561

We then check whether the assumed true value of 𝑏 falls within the 68% and 95%
confidence intervals. However, since the original data is small, with a sample
size of only 16, we need to use 𝑡-distribution instead of the normal distribution.
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t_68 <- qt(0.84, n-2)
t_95 <- qt(0.975, n-2)
cover_68 <- abs(b - b_hat) < t_68 * b_se
cover_95 <- abs(b - b_hat) < t_95 * b_se
paste("68% coverage: ", mean(cover_68))

[1] "68% coverage: 1"

paste("95% coverage: ", mean(cover_95))

[1] "95% coverage: 1"

2.2.0.4 Step 4: Repeating the simulation in a loop

Now, we have to repeat the simulation several times and see if the *coverage
probabilities*, that is, the probabilities that the confidence intervals contain the
true coefficient, are close to 68% and 95%, respectively.

n_fake <- 1000
cover_68 <- rep(NA, n_fake) # c(NA, ... , NA)
cover_95 <- rep(NA, n_fake) # c(NA, ... , NA)
t_68 <- qt(0.84, n-2)
t_95 <- qt(0.975, n-2)
pb <- txtProgressBar(min=0, max=n_fake, initial=0, style=3)
for (s in 1:n_fake){
setTxtProgressBar(pb, s)
y <- a + b*x + rnorm(n, 0, sigma)
fake <- data.frame(x, y)
fit <- stan_glm(y ~ x, data = fake, refresh = 0)

b_hat <- coef(fit)["x"]
b_se <- se(fit)["x"]

cover_68[s] <- abs(b - b_hat) < t_68 * b_se
cover_95[s] <- abs(b - b_hat) < t_95 * b_se

}
close(pb)

paste("68% coverage: ", mean(cover_68))

[1] "68% coverage: 0.721"
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paste("95% coverage: ", mean(cover_95))

[1] "95% coverage: 0.957"

This simulation gives the desired result: close to 68% of 68% confidence intervals,
and close to 95% of 95% confidence intervals, contain the true coefficients.
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Chapter 3

Fitting linear regression

3.1 Least squares
The classic linear regression model is:

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜀.

Define the residuals as

𝑟𝑖 = 𝑦𝑖 − ( ̂𝑎 + ̂𝑏𝑥𝑖).

Note that this is different than the errors 𝜀𝑖 = 𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖), which cannot be
obtained from the observed data.

In least squares regression, we estimate ( ̂𝑎, ̂𝑏) that minimizes the residual sum
of squares:

RSS =
𝑛

∑
𝑖=1

𝑟2𝑖 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ( ̂𝑎 + ̂𝑏𝑥𝑖))2.

The ( ̂𝑎, �̂�) that minimizes RSS is called the ordinary least squares or OLS esti-
mate, which is given by

̂𝑏 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)𝑦𝑖

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2 ,

̂𝑎 = ̄𝑦 − ̂𝑏 ̄𝑥.
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Consequently, we can write the line equation as

𝑦 = ̂𝑎 + ̂𝑏𝑥 = ̄𝑦 − ̂𝑏 ̄𝑥 + ̂𝑏𝑥 = ̄𝑦 + �̂�(𝑥 − ̄𝑥).

Thus, hte line goes through the mean of the data ( ̄𝑥, ̄𝑦).

3.2 Estimation of residual standard deviation 𝜎
Recall that we assume 𝜀𝑖 ∼ 𝒩(0, 𝜎2). To find an unbiased estimator of 𝜎2, we
use the following fact:

RSS
𝜎2 ∼ 𝜒2

𝑛−2.

Combined with the fact that the expectation of a chi-square random variable
equals its number of degrees of freedom, we have

𝔼[RSS𝜎2 ] = 𝑛 − 2,

or equivalently,

𝔼[ RSS
𝑛 − 2] = 𝜎2.

Therefore, RSS
𝑛−2 is an unbiased estimator of 𝜎2. Thus, we estimate the residual

standard deviation 𝜎 using

�̂� = √ RSS
𝑛 − 2 = √ 1

𝑛 − 2
𝑛

∑
𝑖=1

(𝑦𝑖 − ( ̂𝑎 + ̂𝑏𝑥𝑖))2.

3.3 Maximum likelihood estimation
From the model 𝑦𝑖 = 𝑎+𝑏𝑥𝑖+𝜀𝑖 where 𝜀𝑖 ∼ 𝒩(0, 𝜎2), it follows that 𝑦 ∼ 𝑁(𝑎+
𝑏𝑥𝑖, 𝜎2). The likelihood function is defined as the probability density function
of the data, considered as a function of the parameters. Let 𝑦 = (𝑦1,… , 𝑦𝑛) and
$X=(x_1,…,x_n). Then, the likelihood function in terms of ̂𝑎, ̂𝑏 and �̂� is
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𝑝(𝑦 ∣ ̂𝑎, ̂𝑏, �̂�, 𝑋) =
𝑛
∏
𝑖=1

𝑝(𝑦𝑖 ∣ ̂𝑎, ̂𝑏, �̂�, 𝑋)

= 1
(
√
2𝜋�̂�)𝑛

𝑛
∏
𝑖=1

exp⎛⎜
⎝
−1
2 (𝑦 − ( ̂𝑎 + �̂�𝑥𝑖)

�̂� )
2
⎞⎟
⎠

= 1
(
√
2𝜋�̂�)𝑛 exp(− 1

2�̂�2

𝑛
∑
𝑖=1

(𝑦 − ( ̂𝑎 + ̂𝑏𝑥𝑖))2).

Another way to estimate the parameters 𝑎, 𝑏 and 𝜎 is to find ̂𝑎, ̂𝑏 and �̂� that
maximizes the likelihood function. It is common to compute the log-likelihood
function first.

log 𝑝(𝑦 ∣ ̂𝑎, ̂𝑏, �̂�, 𝑋) = − 1
2�̂�2

𝑛
∑
𝑖=1

(𝑦 − ( ̂𝑎 + ̂𝑏𝑥𝑖))2 − 𝑛 log
√
2𝜋�̂�.

We can see the maximizing the log-likelihood function with respect to 𝑎 and 𝑏.
In other words, in linear regression, the maximum likelihood estimates of 𝑎 and
𝑏 are the same as the OLS estimates. To find the maximum likelihood estimate
of 𝜎, we apply the first derivative test of �̂�.

1
�̂�3

𝑛
∑
𝑖=1

(𝑦 − ( ̂𝑎 + ̂𝑏𝑥𝑖))2 −
𝑛
�̂� = 0.

which gives

�̂�mle = √1
𝑛

𝑛
∑
𝑖=1

(𝑦 − ( ̂𝑎 + ̂𝑏𝑥𝑖))2.

We observe that the maximum likelihood estimate is a biased estimate of 𝜎.
Below is a plot of the likelihood function as a function of 𝑎 and 𝑏, with 𝜎 fixed.

The second plot shows a level curve of the likelihood near the maximum likeli-
hood estimate.

3.4 Bayesian linear regression
In Bayesian inference, we start by specifying a prior distribution on the param-
eters. In this case, the parameters are 𝑎, 𝑏 and 𝜎2.

𝑝(𝑎, 𝑏, 𝜎2).
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Figure 3.1: likelihood

Figure 3.2: likelihood
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Examples of prior distributions are: 1. Flat prior: 𝑝(𝑎, 𝑏, 𝜎2) = 1 2. 𝑝(𝑎, 𝑏, 𝜎2) =
𝑝(𝑎, 𝑏 ∣ 𝜎2)𝑝(𝜎2) where 𝑝(𝑎, 𝑏 ∣ 𝜎2) is a normal distribution and 𝑝(𝜎2) is an
inverse-gamma distribution.

Then, we specify the likelihood function. In linear regression, this is usually the
normal likelihood.

𝑝(𝑦 ∣ 𝑎, 𝑏, 𝜎2, 𝑋) = 1
(
√
2𝜋𝜎)𝑛 exp(− 1

2𝜎2

𝑛
∑
𝑖=1

(𝑦 − (𝑎 + 𝑏𝑥𝑖))2).

We use the likelihood, which contains information about the data, to update
our belief on the parameters via the Bayes’ rule.

𝑝(𝑎, 𝑏, 𝜎2 ∣ 𝑦,𝑋) ∝ 𝑝(𝑦 ∣ 𝑎, 𝑏, 𝜎2, 𝑋)𝑝(𝑎, 𝑏, 𝜎2).

The left-hand side is called the posterior distribution. We then draw the pa-
rameters from the posterior distribution and use them to simulate posterior
quantities, such as posterior mean of 𝑦 or confidence intervals.

Here is a code example of Bayesian regression:

library(rstanarm)

x <- 1:10
y <- c(1, 1, 2, 3, 5, 8, 13, 21, 34, 55)
fake <- data.frame(x, y)

To fit the Bayesian regression with normal and inverse-gamma prior,

fit1 <- stan_glm(y ~ x, data=fake)

print(fit1)

stan_glm
family: gaussian [identity]
formula: y ~ x
observations: 10
predictors: 2

------
Median MAD_SD

(Intercept) -13.9 6.7
x 5.1 1.1
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Auxiliary parameter(s):
Median MAD_SD

sigma 9.9 2.5

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

To fit the Bayesian regression with flat prior (in this case, the posterior is the
same as the likelihood),

fit2 <- stan_glm(y ~ x, data=fake, prior_intercept=NULL,
prior=NULL, prior_aux=NULL)

Here, prior_intercept=NULL sets a flat prior for the intercept, prior=NULL
sets a flat prior for the other coefficients, and prior_aux=NULL sets a flat prior
for 𝜎2.

print(fit2)

stan_glm
family: gaussian [identity]
formula: y ~ x
observations: 10
predictors: 2

------
Median MAD_SD

(Intercept) -14.1 7.0
x 5.1 1.1

Auxiliary parameter(s):
Median MAD_SD

sigma 10.3 2.8

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

At default, stan_glm uses simulation to fit the model. To use optimization
instead, set algorithm="optimizing". The following code performs the maxi-
mum likelihood estimate.

fit3 <- stan_glm(y ~ x, data=fake, prior_intercept=NULL,
prior=NULL, prior_aux=NULL,
algorithm="optimizing")
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print(fit3)

stan_glm
family: gaussian [identity]
formula: y ~ x
observations: 10
predictors: 2

------
Median MAD_SD

(Intercept) -13.6 6.0
x 5.0 1.0

Auxiliary parameter(s):
Median MAD_SD

sigma 9.8 2.3

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

3.5 Simulations from stan_glm
The fit from stan_glm yields a matrix of simulations. Here is an example of
using these simulations to construct the 95% confidence interval of the coefficient
of x.

sims <- as.matrix(fit1)
quantile(sims[, 2], c(0.025, 0.975))

2.5% 97.5%
2.796289 7.533930

which is close to the approximation [5.1 ± 2 × 1.1].
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Chapter 4

Prediction and Bayesian
inference

We go back to the Election vs Economy example.

library("rstanarm")

hibbs <- read.table("data/hibbs.dat",
header=TRUE)

M1 <- stan_glm(vote ~ growth, data=hibbs,
refresh=0) # suppress output

print(M1)

stan_glm
family: gaussian [identity]
formula: vote ~ growth
observations: 16
predictors: 2

------
Median MAD_SD

(Intercept) 46.3 1.7
growth 3.0 0.7

Auxiliary parameter(s):
Median MAD_SD

sigma 3.9 0.8

------
* For help interpreting the printed output see ?print.stanreg
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* For info on the priors used see ?prior_summary.stanreg

The stan_glm function, in addition to fitting the model, also performs 4000
simulations from the posterior distribution. The simulations can be obtained
using the as.matrix function.

sims <- as.matrix(M1)
print(sims[1:5,])

parameters
iterations (Intercept) growth sigma

[1,] 45.82530 2.708003 4.354747
[2,] 48.64418 2.151686 3.244081
[3,] 47.25113 2.824543 3.689997
[4,] 47.83557 2.971212 4.549891
[5,] 46.71334 2.303495 4.524525

Then we can use these simulations to compute, for examples, posterior median
and posterior median absolute deviation (MAD).

Median <- apply(sims, 2, median)
MAD_SD <- apply(sims, 2, mad)
print(cbind(Median, MAD_SD))

Median MAD_SD
(Intercept) 46.347337 1.7489130
growth 3.020284 0.7470974
sigma 3.937758 0.7548791

We can see that the numbers are similar to the results of the regression above.

4.1 Prediction and uncertainty: predict,
posterior_linpred, and posterior_predict

These are functions to be called on the fitted regression (M1) with increasing
levels of uncertainty.

1. predict returns the best point estimate for the average value of 𝑦 given
a new value of 𝑥.

̂𝑦 = ̂𝑎 + �̂�𝑥new.

First, we create a new dataframe with a single value 𝑥new = 2%.
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new <- data.frame(growth=2.0)
print(new)

growth
1 2

Then we use the predict function.

y_point_pred <- predict(M1, newdata=new)
print(y_point_pred)

1
52.35994

This gives the same value as using the point estimates of the intercept and
coefficient above: 46.3 + 3.0 × 2 = 52.3.

2. posterior_linpred

This function returns a vector of posterior distributions of 𝑦:

̂𝑦 = 𝑎𝑖 + 𝑏𝑖𝑥new,

over all simulations 𝑎1,… , 𝑎4000 and $𝑏1,… , 𝑏4000 from the posterior dis-
tributions of the intercept and slope, respectively. This is equivalent to:

sims <- as.matrix(M1) # matrix of all 4000 simulations of a, b and sigma
a <- sims[,1] # vector of 4000 simulations of intercept
b <- sims[,2] # vector of 4000 simulations of slope
y_linpred <- a + b*as.numeric(new)
print(y_linpred[1:10])

[1] 51.24131 52.94755 52.90022 53.77800 51.32033 51.29033 51.78258 52.81088
[9] 50.47956 51.70579

Calling posterior_linpred gives us the same numbers:

y_linpred <- posterior_linpred(M1, newdata=new)
print(y_linpred[1:10])

[1] 51.24131 52.94755 52.90022 53.77800 51.32033 51.29033 51.78258 52.81088
[9] 50.47956 51.70579

3. posterior_predict
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This function returns a vector of predictions, taking into account uncer-
tainty of 𝑎, 𝑏 and 𝜎.

̂𝑦 = 𝑎𝑖 + 𝑏𝑖𝑥new + 𝜀, 𝜀 ∼ 𝒩(0, 𝜎2
𝑖 ).

In addition to 𝑎𝑖’s and 𝑏𝑖’s as above, we also have 𝜎1,… , 𝜎4000, the 4000
simulations from the posterior distribution. This is the same as the fol-
lowing code:

sims <- as.matrix(M1) # matrix of all 4000 simulations of a, b and sigma
n_sims <- nrow(sims) # number of rows in sims
a <- sims[,1] # vector of 4000 simulations of intercept
b <- sims[,2] # vector of 4000 simulations of slope
sigma <- sims[,3] # vector of 4000 simulations of sigma
y_pred <- a + b*as.numeric(new) + rnorm(n_sims, 0, sigma)
print(y_pred[1:10])

[1] 53.25356 54.24320 49.29980 59.13072 45.90218 53.90072 46.59640 53.26520
[9] 49.48384 56.15140

Let us look at the histogram of the predictions.

hist(y_pred, breaks=20)
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Now we try calling posterior_predict directly.
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y_pred <- posterior_predict(M1, newdata=new)
print(y_pred[1:10])

[1] 55.78586 50.32929 54.14278 57.30579 58.52283 52.40129 48.17951 51.03949
[9] 53.80145 54.73395

The predictions are not exactly the same as those from the direct simula-
tion because of the noises. Nonetheless, we can compare the histograms
between posterior_predict and direct simulation.

hist(y_pred, breaks=20)
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Now we can compute the point estimation of Clinton’s voting share, the MAD
and the winning probability.

y_pred_mean <- median(y_pred)
y_pred_mad <- mad(y_pred)
win_indicator <- (y_pred > 50)
print(win_indicator[1:10])

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE

win_prob <- mean(win_indicator)
cat("Clinton's voting share: ", y_pred_mean, "\n")
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Clinton's voting share: 52.36793

cat("MAD: ", y_pred_mad, "\n")

MAD: 3.973888

cat("Winning probability: ", win_prob, "\n")

Winning probability: 0.72925

4.1.1 Predictions on multiple inputs
We can also make predictions on a range of input values (in this case, outputs of
posterior_linpred and posterior_pred are matrices of simulations of respec-
tive inputs.). Remember that we made a dataframe new consisting of a single
value. In general, we can use a dataframe of a sequence of inputs. Here is an
example where inputs are −2.0%,−1.5%,…4.0%.

new_grid = data.frame(growth=seq(-2.0, 4.0, 0.5))
y_point_pred_grid = predict(M1, newdata=new_grid)
y_linpred_grid = posterior_linpred(M1, newdata=new_grid)
y_pred_grid = posterior_predict(M1, newdata=new_grid)

cat("Point estimations\n")

Point estimations

print(y_point_pred_grid)

1 2 3 4 5 6 7 8
40.33822 41.84093 43.34365 44.84636 46.34908 47.85179 49.35451 50.85722

9 10 11 12 13
52.35994 53.86265 55.36536 56.86808 58.37079

cat("\nLinear predictions with uncertainty\n")

Linear predictions with uncertainty

print(y_linpred_grid[1:5,])

iterations 1 2 3 4 5 6 7
[1,] 40.40930 41.76330 43.11730 44.47130 45.82530 47.17930 48.53330
[2,] 44.34081 45.41665 46.49250 47.56834 48.64418 49.72002 50.79587
[3,] 41.60205 43.01432 44.42659 45.83886 47.25113 48.66341 50.07568
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[4,] 41.89315 43.37876 44.86436 46.34997 47.83557 49.32118 50.80679
[5,] 42.10635 43.25810 44.40984 45.56159 46.71334 47.86509 49.01683

iterations 8 9 10 11 12 13
[1,] 49.88731 51.24131 52.59531 53.94931 55.30331 56.65731
[2,] 51.87171 52.94755 54.02340 55.09924 56.17508 57.25092
[3,] 51.48795 52.90022 54.31249 55.72476 57.13704 58.54931
[4,] 52.29239 53.77800 55.26360 56.74921 58.23481 59.72042
[5,] 50.16858 51.32033 52.47208 53.62382 54.77557 55.92732

cat("\nPosterior predictions\n")

Posterior predictions

print(y_pred_grid[1:5,])

1 2 3 4 5 6 7 8
[1,] 44.56453 39.33810 48.36911 36.91184 47.09549 45.61734 52.32406 43.72461
[2,] 43.47245 41.98679 46.74778 48.54136 44.28503 50.63784 49.28457 53.72223
[3,] 41.29061 44.92428 45.03022 44.89350 49.16970 53.57190 54.71974 53.06217
[4,] 44.32309 42.94489 50.09049 44.27604 48.09694 47.54070 46.53251 49.00634
[5,] 36.65576 37.83628 47.56969 51.50063 43.05292 45.83129 54.54305 43.97959

9 10 11 12 13
[1,] 50.11013 46.43060 50.25066 52.48247 53.61879
[2,] 45.10324 53.13383 58.71023 54.39264 60.90816
[3,] 58.03417 56.40354 55.30158 52.04904 59.79294
[4,] 55.48687 57.27834 56.48904 51.28868 58.55687
[5,] 52.73422 54.00155 53.75586 55.41978 55.71907

The result of predict is a vector of length 13, posterior_linpred is a 4000×13
matrix, which contains 4000 predictions for each of the 13 values of growth, and
posterior_predict is another 4000 × 13 matrix.

4.1.2 Predictions with input uncertainty
Previously, we have expressed uncertainty in the election outcome conditional
on fixed values of economic growth. However, growth is usually estimated prior
to the campaign, and updated by the government some time after. Hence, we
have to take into account the uncertainty in growth when making predictions.

Let us assume that before the campaign, the economic growth was 2%, but
after the campaign and just before the election, there would be a slight change
in economic growth. We shall model the growth by 𝒩(0, 0.32). Let us simulate
the growth from this distribution.
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x_new <- rnorm(n_sims, 2.0, 0.3) # create 4000 random numbers from N(0, 0.09)

We can then simulate the distribution of the prediction using the simulated 𝑎,
𝑏 and 𝜎.

sims <- as.matrix(M1) # matrix of all 4000 simulations of a, b and sigma
n_sims <- nrow(sims) # number of rows in sims
a <- sims[,1] # vector of 4000 simulations of intercept
b <- sims[,2]

y_pred <- rnorm(n_sims, a + b*x_new, sigma)

Now we can compute the point estimation of Clinton’s voting share, the MAD
and the winning probability as before.

y_pred_mean <- median(y_pred)
y_pred_mad <- mad(y_pred)

win_indicator <- (y_pred > 50)
win_prob <- mean(win_indicator)

cat("Clinton's voting share: ", y_pred_mean, "\n")

Clinton's voting share: 52.44851

cat("MAD: ", y_pred_mad, "\n")

MAD: 4.206299

cat("Winning probability: ", win_prob, "\n")

Winning probability: 0.7195

Notice that the point prediction 52.3 is unchanged while the MAD has increased
from 4.00 to 4.12 to reflect the extra uncertainty from the inputs.

4.2 Different types of priors in regression
Recall that in Bayesian inference, the likelihood is multiplied by a prior distri-
bution to yield a posterior distribution.

In previous sections, we obtain the posterior distribution without being con-
cerned with the prior distributions, as the data have strong linear relationship
between the two variables. When the data are less informative, then we start to
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think carefully about our choice of prior. We will consider three specific types
of prior.

1. Uniform prior distribution

This is sometimes called non-informative or flat prior. With a flat prior,
the posterior is simply the product of the likelihood function and a con-
stant. Thus the maximum likelihood estimate is the mode of the posterior
distribution.

As we mentioned in the previous chapter, to run with a flat prior, set the
options of the coefficient and scale parameters to NULL.

M3 <- stan_glm(vote ~ growth, data=hibbs,
prior_intercept=NULL, prior=NULL, prior_aux=NULL,
refresh=0)

print(M3)

stan_glm
family: gaussian [identity]
formula: vote ~ growth
observations: 16
predictors: 2
------

Median MAD_SD
(Intercept) 46.2 1.7
growth 3.1 0.7

Auxiliary parameter(s):
Median MAD_SD

sigma 4.0 0.8

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Then we plot the simulated values of 𝑎 and 𝑏 from the posterior distribu-
tion

sims <- as.matrix(M3)
a <- sims[,1]
b <- sims[,2]
plot(a, b, cex=0.3)
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We can see that the (joint) posterior distribution of 𝑎 and 𝑏 is a normal
distribution centered at the point estimates.

2. Weakly informative prior

Weakly informative priors contain information about the scales of the
parameters, where the scales are obtained from some appropriate analysis.
They are not informative prior as they do not utilize prior knowledge about
the parameters.

At default, the stan_glm function uses a data-dependent weakly informa-
tive prior.

𝑝(𝑎, 𝑏, 𝜎) = 𝑝(𝑎|𝑏)𝑝(𝑏)𝑝(𝜎),

where

1. 𝑝(𝑏) = 𝒩(0, 2.5 sd(𝑦)/sd(𝑥))
2. 𝑝(𝑎|𝑏) = 𝑝(𝑎 + 𝑏 ̄𝑥|𝑏) = 𝒩( ̄𝑦, 2.5 sd(𝑦))
3. 𝑝(𝜎) = Exp(1/sd(𝑦)).

The scales of the intercept and slope are obtained via the following anal-
ysis:

For a model of the form 𝑦 = 𝑎 + 𝑏𝑥 + error, the formulae of the OLS
estimate are

̂𝑏 = ∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)(𝑥𝑖 − ̄𝑥)
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

̂𝑎 = ̄𝑦 − ̂𝑏 ̄𝑥.
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Applying the Cauchy-Schwarz inequality: ∣∑𝑖 𝑎𝑖𝑏𝑖∣ ≤ √∑𝑖 𝑎2𝑖√∑𝑖 𝑏2𝑖 , we
obtain

| ̂𝑏| = ∣∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)(𝑥𝑖 − ̄𝑥)∣
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

≤
√∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

=
√∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

= sd(𝑦)
sd(𝑥) .

We use this inequality for the estimate | ̂𝑏| to guide our belief about the
value $b$. More precisely, the inequality suggests that the value of |𝑏|
should not exceed sd(y)/sd(𝑥). This motivates the weakly informative
prior for 𝑏 used in stan_glm, which is 𝒩(0, 2.5 sd(y)/sd(𝑥)); such prior
pulls the slope estimate towards the range from −2.5 sd(y)/sd(𝑥)) to
2.5 sd(y)/sd(𝑥)). Here, the 2.5 factor was chosen arbitrarily so that that
prior does not have too much influence on the slope estimate when data
are sufficiently informative.

For the intercept 𝑎, the choice of the distribution simply comes from the
following computations with 𝑏 fixed:

𝔼[𝑎 + 𝑏 ̄𝑥] = 𝔼[ ̄𝑦]
sd(𝑎 + 𝑏 ̄𝑥) = sd(𝑎).

Lastly, Exp(1/sd(𝑦)) is chosen as a prior for 𝜎 because it is a distribution
over positive real numbers with mean equal sd(𝑦).
To fit a linear regression with the weakly informative prior, simply run

M1 <- stan_glm(vote ~ growth, data=hibbs, refresh=0)
print(M1)

stan_glm
family: gaussian [identity]
formula: vote ~ growth
observations: 16
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predictors: 2
------

Median MAD_SD
(Intercept) 46.3 1.7
growth 3.0 0.7

Auxiliary parameter(s):
Median MAD_SD

sigma 3.9 0.7

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

3. Informative prior

Informative priors are designed with prior knowledge about the variables.
For the intercept, the prior_intercept argument in stan_glm is defined
with our guess of 𝑎+𝑏 ̄𝑥, which is the value of 𝑦 when 𝑥 is set to the average
value. In the Election vs Economic growth example, this corresponds to
Clinton’s voting share when the growth is historically average, should be
close to 50%, and it should not be less than 40% or more than 60%. Thus
we set the prior for the intercept to be 𝒩(50, 10).
For the slope, we should consider: how much is a swing in voting share
if the economic growth were to increase by 1%. The swing is most likely
not going to be more than 10%. With this information, we set the prior
of the slope to be 𝒩(5, 5).
Here is the code to fit a Bayesian regression model with these priors:

M4 <- stan_glm(vote ~ growth, data=hibbs,
prior=normal(5,5), prior_intercept=normal(50, 10),
refresh=0)

print(M4)

stan_glm
family: gaussian [identity]
formula: vote ~ growth
observations: 16
predictors: 2
------

Median MAD_SD
(Intercept) 46.1 1.7
growth 3.1 0.7

Auxiliary parameter(s):
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Median MAD_SD
sigma 3.9 0.7

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

We see that the difference between this model and the previous models are
not noticeable since the prior contains very little information compared to
the data.

4.2.1 Example of regression with difference priors: Beauty
and sex ratio

Here, we consider data in which the predictor is the parents’ attractiveness of a
five-point scale, and the target variable is the percentage of girls births among
parents in each attractiveness category.

We fit two regression models, one with a weakly informative prior, and one
with an informative prior. In informative prior, we set a prior for the following
parameters:

1. Intercept: to find a prior, we must guess the value of 𝑎 + 𝑏 ̄𝑥, that is, the
percentages of girls for parents of average beauty. We have prior knowledge
of percentages of girl birth to be stable at roughly 48.5% to 49%. So we
choose the prior to be 𝒩(48.8, 0.52).

2. Slope: We think that the parents’ attractive should have barely any effect
on the percentages of girl births, so we choose the prior to be 𝒩(0, 0.22).

Below are the plots of the regressions with the weakly informative prior and the
informative prior, respectively. We can see that the data offers no information
about 𝑎 and 𝑏.
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Chapter 5

Linear regression with
multiple predictors

The linear regression with multiple predictors 𝑥1,… , 𝑥𝑝 can be written in matrix-
vector form (ignoring the error terms) as:

⎛⎜⎜⎜
⎝

𝑦1
𝑦2
⋮
𝑦𝑛

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝛽0 + 𝛽1𝑥11 +…+ 𝛽𝑝𝑥1𝑝 + 𝜀1
𝛽0 + 𝛽1𝑥21 +…+ 𝛽𝑝𝑥2𝑝 + 𝜀2

⋮
𝛽0 + 𝛽1𝑥𝑛1 +…+ 𝛽𝑝𝑥𝑛𝑝 + 𝜀𝑛

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

1 𝑥11 … 𝑥1𝑝
1 𝑥21 … 𝑥2𝑝
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 … 𝑥𝑛𝑝

⎞⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜
⎝

𝛽0
𝛽1
⋮
𝛽𝑝

⎞⎟⎟⎟
⎠

+
⎛⎜⎜⎜
⎝

𝜀1
𝜀2
⋮
𝜀𝑛

⎞⎟⎟⎟
⎠

,

or, in short,

𝑦 = 𝑋𝛽 + 𝜀.

Here, 𝑦 is the vector of outputs, 𝑋 is the design matrix, 𝛽 is the vector of param-
eters and 𝜀 is the vector of the error terms. Assuming that 𝜀𝑖 are distributed as
$\mathcal{N}(0,\sigma^2)$, another way of writing the model is

𝑦 ∼ 𝒩(𝑋𝛽, 𝜎2𝐼).

We attempt to find an estimator ̂𝛽 of 𝛽 by removing the error term to obtain
an approximate equation:
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𝑦 ≈ 𝑋 ̂𝛽
𝑋𝑇 𝑦 ≈ 𝑋𝑇𝑋 ̂𝛽

̂𝛽 ≈ (𝑋𝑇𝑋)−1𝑋𝑇 𝑦.

Such ̂𝛽 is called an ordinary least squares (OLS) estimate of 𝛽.
First, we import the KidIQ data, which contains data of children’s and their
mother’s IQ.

kidiq <- read.csv("data/kidiq.csv")

head(kidiq)

kid_score mom_hs mom_iq mom_work mom_age
1 65 1 121.11753 4 27
2 98 1 89.36188 4 25
3 85 1 115.44316 4 27
4 83 1 99.44964 3 25
5 115 1 92.74571 4 27
6 98 0 107.90184 1 18

Here, kid_score is the child’s IQ score, mom_hs is an indicator for whether the
mother graduated from high school (0 or 1), and mom_iq is the mother’s IQ
score.

Now we fit a linear regression model of kid_score on two predictors: mom_hs
and mom_iq.

library(rstanarm)

fit_1 <- stan_glm(kid_score ~ mom_hs + mom_iq, data=kidiq,
refresh=0)

print(fit_1)

stan_glm
family: gaussian [identity]
formula: kid_score ~ mom_hs + mom_iq
observations: 434
predictors: 3

------
Median MAD_SD

(Intercept) 25.6 5.8
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mom_hs 5.9 2.2
mom_iq 0.6 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 18.1 0.6

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Thus the fitted line from the linear regression above is:

kid_score = 26 + 6 ∗mom_hs+ 0.6 ∗mom_iq+ error.

Below are some suggestions for an interpretation of the mom_iq’s coefficient:

• Predictive interpretation: the difference between *two* children’s IQ when
their mothers’ IQs differ by 1 and the other predictors (in this case,
mom_hs) are identical is 0.6 on average.

• Counterfactual interpretation: changing the mother’s IQ from 100 to 101,
while leaving the other predictors unchanged, would lead to an expected
increase of 0.6 in child’s test score. This kind of reasoning arises in causal
inference.

5.1 Interactions
The linear model with two predictors above imposes that the slope of mom_iq is
the same for the subsets consisting of mom_hs = 0 and mom_hs = 1. However,
if we consider the linear regression on these two subsets:

mom_hs_0 = kidiq[kidiq$mom_hs == 0, ]
mom_hs_1 = kidiq[kidiq$mom_hs == 1, ]

fit_2 <- stan_glm(kid_score ~ mom_iq, data=mom_hs_0,
refresh=0)

fit_3 <- stan_glm(kid_score ~ mom_iq, data=mom_hs_1,
refresh=0)

plot(mom_hs_0$mom_iq, mom_hs_0$kid_score, col="blue", cex=0.8)
points(mom_hs_1$mom_iq, mom_hs_1$kid_score, col="red", cex=0.8)
abline(coef(fit_2), col="blue")
abline(coef(fit_3), col="red")
legend(75, 135, legend=c("mom_hs = 0", "mom_hs = 1"),
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col=c("blue", "red"), lty=1)
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we can see that the slopes differ by a significant amount between the subsets.
A remedy for this is to add an interaction term between mom_hs and mom_iq.
This can be done by adding mom_hs:mom_iq to stan_glm.

fit_4 <- stan_glm(kid_score ~ mom_hs + mom_iq + mom_hs:mom_iq, data=kidiq,
refresh=0)

print(fit_4)

stan_glm
family: gaussian [identity]
formula: kid_score ~ mom_hs + mom_iq + mom_hs:mom_iq
observations: 434
predictors: 4

------
Median MAD_SD

(Intercept) -10.0 13.6
mom_hs 49.4 15.1
mom_iq 1.0 0.1
mom_hs:mom_iq -0.5 0.2

Auxiliary parameter(s):
Median MAD_SD

sigma 18.0 0.6

------
* For help interpreting the printed output see ?print.stanreg
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* For info on the priors used see ?prior_summary.stanreg

The output tells us that the fitted model is:

kid_score = −10.5+50∗mom_hs+mom_iq−0.5∗mom_hs∗mom_iq+error.

We now obtain equations of kid_score vs mom_iq for each mom_hs group by
setting mom_hs = 0 and mom_hs = 1. When mom_hs = 0, the equation becomes:

kid_score = −10.5 +mom_iq+ error.

When mom_hs = 1, the equation becomes:

kid_score = 39.5 + 0.5 ∗mom_iq+ error.

Comparing between three equations above, we can interpret the coefficients of
the equation with the interaction term as follows:

• The intercept represents the predicted test scores for children whose moth-
ers did not complete high school (mom_hs = 0) and had IQs of 0 (mom_iq
= 0)—not a meaningful scenario.

The intercept can be more interpretable if input variables are centered
before including them as regression predictors.

• The coefficient of mom_hs is the difference between the predicted test scores
for children whose mothers did not complete high school (mom_hs = 0) and
children whose mothers did complete high school (mom_hs = 1), both with
mom_iq = 0; this is inconceivable as no mothers have IQ of 0. To make
the coefficient more interpretable, one might want to center the variable
(i.e. subtract the observed values of mom_hs by their mean) first.

• The coefficient of mom_iq can be thought of as the comparison of mean
test scores across children whose mothers did not complete high school
(mom_hs = 0), but their mothers’ IQs differ by 1 point.

• The coefficient on the interaction term is the difference between the slopes
of the lines (regression on each mom_hs group) in the plot above.

When should we look for interactions? Interaction typically arises when the
effects of a predictor are different across different groups. For example, when
predicting the likelihood of cancer on smoking (0 or 1) and home radon exposure,
the risk of cancer associated with the radon exposure is higher in the smoking
group than non-smoking group.
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5.2 Regression with multiple levels of a categor-
ical predictor

We give an example of a regression with multiple inputs, some of which are
categorical variables with multiple levels. Here, we will use the Earnings data.

earnings <- read.csv("data/earnings.csv")

summary(factor(earnings$ethnicity))

Black Hispanic Other White
180 104 38 1494

We fit a linear regression of weight on three predictors: height, male (0 or 1)
and ethnicity (White, Black, Hispanic and Other).

fit_5 <- stan_glm(weight ~ height + male + ethnicity, data=earnings,
refresh=0)

print(fit_5)

stan_glm
family: gaussian [identity]
formula: weight ~ height + male + ethnicity
observations: 1789
predictors: 6

------
Median MAD_SD

(Intercept) -99.8 16.5
height 3.9 0.3
male 12.1 1.9
ethnicityHispanic -6.2 3.7
ethnicityOther -12.2 5.1
ethnicityWhite -5.2 2.3

Auxiliary parameter(s):
Median MAD_SD

sigma 28.7 0.5

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

We can see that stan_glm has automatically created three new indica-
tor variables (also called dummy variables), namely ethnicityHispanic,
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ethnicityOther and ethnicityWhite for each person. The value of each
variable is 1 if the person belongs to the corresponding level, otherwise it is 0.
For example, for a Hispanic person, ethnicityHispanic = 1, ethnicityOther
= 0 and ethnicityWhite = 0. But if we look closely at the ethnicity column
in the dataset, we would notice that the group of Blacks is missing. This is
because stan_glm took Black to be the baseline category against the other
groups. Consequently, a black person is represented by ethnicityHispanic =
0, ethnicityOther = 0 and ethnicityWhite = 0.

The model from the regression above is:

weight = −100 + 3.9 ∗ height+ 12.1 ∗male
− 6.1 ∗Hispanic− 12.3 ∗Other− 5.2 ∗White+ error.

The coefficient of ethnicity, can be interpreted as follows: between two persons
with the same height and same gender,

• On average, a Hispanic person is 6.1 pounds lighter than a Black person,
an Other person is 12.3 pounds lighter than a Black person, and a White
person is 5.2 pounds lighter than a Black person.

• On average, a Hispanic person is 12.3 − 6.1 = 6.2 pounds heavier than an
Other person.

• On average, a Hispanic person is 6.1 − 5.2 = 0.9 pounds lighter than a
White person.

• On average, a White person is 12.3 − 5.2 = 7.1 pounds heavier than an
Other person.

Sometimes, we would like to change the baseline group; this can be done by
specifying the order of the levels in the categorical variables. An example below
shows how to set White as the baseline groups.

earnings$eth <- factor(earnings$ethnicity,
levels=c("White", "Black", "Hispanic", "Other"))

fit_5 <- stan_glm(weight ~ height + male + eth, data=earnings,
refresh=0)

print(fit_5)

stan_glm
family: gaussian [identity]
formula: weight ~ height + male + eth
observations: 1789
predictors: 6

------
Median MAD_SD

(Intercept) -105.1 17.1
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height 3.9 0.3
male 12.1 2.0
ethBlack 5.2 2.4
ethHispanic -0.9 3.0
ethOther -7.0 4.9

Auxiliary parameter(s):
Median MAD_SD

sigma 28.7 0.5

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

5.2.1 Simulation-based prediction
From the fitted model, we give an example of computing Pr(weight > 180) for
a Hispanic male who is 70 inches tall. As in the previous chapter, we compute
the probability using posterior simulation.

new = data.frame(height=70, male=1, eth="Hispanic")
y_pred <- posterior_predict(fit_5, newdata=new)
y_180_indicator <- (y_pred > 180)
y_180_prob <- mean(y_180_indicator)
cat("Probability of being heavier than 180 pounds: ", y_180_prob)

Probability of being heavier than 180 pounds: 0.4485

5.3 Paired and blocked designs as a regression
problem

In the previous sections, we see that regression coefficients can be interpreted
as comparisons. Conversely, comparison between two or more grounds can be
treated a regressions.

1. Completely randomized experiment

Suppose that in an experiment, people are randomly assigned into treat-
ment and control groups. A standard estimate for the treatment effect
is ̄𝑦𝑇 − ̄𝑦𝐶 . We can also obtain this estimate by assigning an indicator
variable to each group: 0 for the control group and 1 for the treatment
group. Then ̄𝑦𝑇 − ̄𝑦𝐶 is precisely the coefficient of the following regression:

fit <- stan_glm(y ~ treatment, data=experiment)

55



where treatement is 0 if the person is in the control group, and 1 if they
are in the treatment group.

2. Paired design

When the experiment consists of control-treatment pairs and the people
in each pair might not be independent, we can assign a new indicator
variable that indicates each pair e.g. the control and treatment in the first
pair get pair = 1, the second pair gets pair = 2, so on and so forth.

fit <- stan_glm(y ~ treatment + factor(pair), data=experiment)

3. Block design

When considering the treatment effect over 𝐽 groups of people, we can
assign a new indicator variable group to indicate each group e.g. the first
group gets group = 1.

fit <- stan_glm(y ~ treatment + factor(group), data=experiment)

5.4 Weighted regression
The OLS estimate ̂𝛽 minimizes the least squares objective:

∑
𝑖
(𝑦𝑖 −𝑋𝑖 ̂𝛽)2,

where𝑋𝑖 = (1, 𝑥𝑖1,… , 𝑥𝑖𝑝). We can modify the objective with weights 𝑤1,… ,𝑤𝑛
for each instance in the sum:

∑
𝑖

𝑤𝑖(𝑦𝑖 −𝑋𝑖 ̂𝛽)2. (1)

We typically require that ∑𝑖 𝑤𝑖 = 1. Why do we want to add these weights
to the objective? Sometimes, the proportions of different groups in the sample
data do not match with those in the population, and we would like to make
correction when fitting the model by adding the weights. For example, suppose
that our data consists of 70 white persons and 30 black persons. To balance
the model between these two groups, we can put weight 1/140 on all terms that
correspond to white persons, and 1/60 to all terms that correspond to black
persons.

Let 𝑊 = Diag(𝑤1,… ,𝑤𝑛). The estimate ̂𝛽wls that minimizes the weighted
objective (1) is
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̂𝛽wls = (𝑋𝑇𝑊−1𝑋)−1𝑋𝑇𝑊−1𝑦.

To fit a weighted regression model using stan_glm, we just need to specify the
weights parameter.

summary(factor(earnings$ethnicity))

Black Hispanic Other White
180 104 38 1494

N <- 180 + 104 + 38 + 1494
eth <- earnings$ethnicity
w <- (1/(4*180))*(eth == "Black") +
(1/(4*104))*(eth == "Hispanic") +
(1/(4*38))*(eth == "Other") +
(1/(4*1494))*(eth == "White")

fit_6 <- stan_glm(weight ~ height + male + ethnicity, data=earnings,
weights=w, refresh=0)

print(fit_6)

stan_glm
family: gaussian [identity]
formula: weight ~ height + male + ethnicity
observations: 1789
predictors: 6

------
Median MAD_SD

(Intercept) -100.1 16.2
height 3.9 0.3
male 12.1 2.0
ethnicityHispanic -6.2 3.5
ethnicityOther -12.4 5.4
ethnicityWhite -5.3 2.3

Auxiliary parameter(s):
Median MAD_SD

sigma 28.6 0.5

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The results of the weighted regression is not much different than those of the
classical regression.
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Chapter 6

Model diagnostics and
evaluation

We will talk about several graphical and quantitative ways to check our model’s
fit to the data, and later we will talk about about cross validation—a technique
for comparing between different models.

6.1 Plotting the data and the fitted model
6.1.1 Model with one predictor
In one-predictor cases, we can visualize the regression’s fit by simply plotting
the data and the regression line. Here, we plot the KidIQ data and the fitted
lines.

library(rstanarm)

kidiq = read.csv("data/kidiq.csv")

fit_2 <- stan_glm(kid_score ~ mom_iq, data=kidiq, refresh=0)
plot(kidiq$mom_iq, kidiq$kid_score,

xlab="Mother IQ score", ylab="Child test score")
abline(coef(fit_2)[1], coef(fit_2)[2])
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6.1.2 Model with two predictors
6.1.2.1 Model with one categorical predictor and no interaction

We can plot each group and the fitted model on that group. Using the KidIQ
data as an example, we recall that the non-interactive regression equation is

kid_score = ̂𝛽1 + ̂𝛽2 ∗mom_hs+ ̂𝛽3 ∗mom_iq.

Consequently, the equation of kid_score on mom_iq for the group mom_hs = 1
is

kid_score = ( ̂𝛽1 + ̂𝛽2) + ̂𝛽3 ∗mom_iq,

and the equation for the group mom_hs = 0 is

kid_score = ̂𝛽1 + ̂𝛽3 ∗mom_iq.

We thus obtain the intercept and the slope of each equation, which we use to
plot the regression line of each mom_hs group below.

fit_3 <- stan_glm(kid_score ~ mom_hs + mom_iq, data=kidiq,
refresh=0)

# create a vector with value = "red" if mom_hs==1
# "blue" if mom_hs==0
colors <- ifelse(kidiq$mom_hs==1, "red", "blue")

print(colors[1:10])
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[1] "red" "red" "red" "red" "red" "blue" "red" "red" "red" "red"

plot(kidiq$mom_iq, kidiq$kid_score,
xlab="Mother IQ score", ylab="Child test score",
col=colors, pch=20)

b_hat <- coef(fit_3)
abline(b_hat[1] + b_hat[2], b_hat[3], col="red")
abline(b_hat[1], b_hat[3], col="blue")
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6.1.2.2 Model with one categorical variable and an interaction

In this case, the equation is

kid_score = ̂𝛽1 + ̂𝛽2 ∗mom_hs+ ̂𝛽3 ∗mom_iq+ ̂𝛽4 ∗mom_hs ∗mom_iq.

When mom_hs = 1, the equation is

kid_score = ( ̂𝛽1 + ̂𝛽2) + ( ̂𝛽3 + ̂𝛽4) ∗mom_iq,

and when mom_hs = 0, we have the same equation as the no-interaction case:

kid_score = ̂𝛽1 + ̂𝛽3 ∗mom_iq.

Again, we can use the intercept and slope in each equation to plot the regression
line on the corresponding level of mom_hs.
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fit_4 <- stan_glm(kid_score ~ mom_hs + mom_iq + mom_hs:mom_iq, data=kidiq,
refresh=0)

colors <- ifelse(kidiq$mom_hs==1, "red", "blue")
plot(kidiq$mom_iq, kidiq$kid_score,

xlab="Mother IQ score", ylab="Child test score",
col=colors, pch=20)

b_hat <- coef(fit_4)
abline(b_hat[1] + b_hat[2], b_hat[3] + b_hat[4], col="red")
abline(b_hat[1], b_hat[3], col="blue")
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We can see that, unlike the no-interaction case, the lines are not parallel to each
other.

6.1.2.3 Plotting the regression with uncertainty

We can use the posterior simulations to represent the uncertainty in the esti-
mated regression coefficients. As an example, we plot the interactive model
above on the subset of data with mom_hs = 1 along with 20 simulations drawn
from the stan_glm fit.

sims <- as.matrix(fit_4)
n_sims <- nrow(sims)
mom_iq_1 <- kidiq$mom_iq[kidiq$mom_hs == 1]
kid_score_1 <- kidiq$kid_score[kidiq$mom_hs == 1]
plot(mom_iq_1, kid_score_1,

xlab="Mother IQ score", ylab="Child test score",
pch=20)

sims_display <- sample(n_sims, 20) # sample 20 numbers between 1 and n_sims
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for (i in sims_display){
# plot with the coefficients from the i-th simulation
abline(sims[i,1] + sims[i,2], sims[i,3] + sims[i,4], col="gray")

}
# plot with the estimated coefficients
abline(coef(fit_2)[1], coef(fit_2)[2], col="black")
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6.1.3 Model with multiple predictors
Suppose that the regression equation is

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 +…+ ̂𝛽𝑝𝑥𝑝.

For each predictor 𝑥𝑘, we can plot the line of 𝑦 vs. 𝑥𝑘 while holding the other
predictors fixed at their averages. For example, the equation of 𝑦 vs. 𝑥1 is

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2 ̄𝑥2 …+ ̂𝛽𝑝 ̄𝑥𝑝.

In the example above, we can plot the line of kid_score vs mom_iq by fixing
mom_hs at its average. The equation becomes:

kid_score = ( ̂𝛽1 + ̂𝛽2 ∗mom_hs) + ( ̂𝛽3 + ̂𝛽4 ∗mom_hs) ∗mom_iq.

mom_hs_mean = mean(kidiq$mom_hs)

plot(kidiq$mom_iq, kidiq$kid_score,
xlab="Mother IQ score", ylab="Child test score",
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pch=20)
b_hat <- coef(fit_4)
abline(b_hat[1] + b_hat[2] * mom_hs_mean,

b_hat[3] + b_hat[4] * mom_hs_mean)
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6.2 Plotting the outcome against the prediction
Another way to check the model’s fit is to plot the outcome 𝑦 against the linear
prediction ̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 +… + ̂𝛽𝑝𝑥𝑝. Let’s apply this technique to the KidIQ
data above.

kid_score_pred_4 = predict(fit_4)

plot(kid_score_pred_4, kidiq$kid_score,
xlab="Prediction", ylab="Outcome",
asp=1) # set the aspect ratio between x- and y-axis to 1

abline(0, 1) # plot line y = x
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6.3 Residual plots
One way to evaluate the model’s fit and independence of errors is to plot the
residuals:

𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖,

against the predictions ̂𝑦𝑖. Let’s see a residual plot for the simple regression of
kid_score vs. mom_iq.

Predictions = predict(fit_2)

Residuals = kidiq$kid_score - Predictions

plot(Predictions, Residuals)
abline(0, 0)
abline(sigma(fit_2), 0, lty="dashed") # +1 standard deviation
abline(-sigma(fit_2), 0, lty="dashed") # -1 standard deviation
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The residuals are relatively small compared to the outcomes, most of which
are between 40-140, and they look sufficiently random; this suggests that the
model’s errors are independent with zero mean.

6.4 Comparing simulated data to real data
We can also simulate outcomes from the posterior predictive distribution and
compare their distribution (that is, their histogram) to that of the original data.
As an example, we take a look at Newcomb dataset from Stigler (1997), which
contains data from an experiment to estimate the speed of light. Here, the
outcome 𝑦 represents the amount of time required for light to travel a distance
of 7442 meters and are recorded as deviations from 24800 nanoseconds.

newcomb = read.csv("data/newcomb.txt")

head(newcomb)

y
1 28
2 26
3 33
4 24
5 34
6 -44

We fit a simple normal distribution model on this data.

𝑦 = 𝛽0 + 𝜀, 𝜀 ∼ 𝒩(0, 𝜎2),

which is equivalent to 𝑦 ∼ 𝒩(𝛽0, 𝜎2).
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n_sample <- nrow(sims)

fit <- stan_glm(y ~ 1, data=newcomb,
refresh=0)

y_sims <- posterior_predict(fit)

Here, y_sims contains 4000 simulations of 𝑦. To replicate the original dataset,
which has 66 observations, we make 20 datasets, each of which consists of 66
numbers randomly sampled from y_sims.

par(mfrow=c(5, 4))
par(mar = c(1, 1, 1, 1))
for (s in sample(n_sample, 20)) {
hist(y_sims[s,], main=NULL, ylab=NULL)

}
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Now let us compare these histograms with the original data.

hist(newcomb$y, main=NULL, xlab="y", breaks=20)
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The simulated histograms are noticably different than that of the original data,
and we can see that the normal model is not suitable for the data. Alternatively,
one might use an asymmetric contaminated normal distribution or a symmetric
long-tailed distribution.

6.5 Explained variance 𝑅2

The coefficient of determination (𝑅2) is calculated as follows:

𝑅2 = 1 − ∑𝑖(𝑦𝑖 − ̂𝑦𝑖)2
∑𝑖(𝑦𝑖 − ̄𝑦)2 = 1 − RSS

TSS = TSS− RSS
TSS ,

where RSS is the residual sum of squares and TSS is the total sum of squares.

• TSS measures the variance of the outcome 𝑦.
• RSS measures the amount of variance unexplained by the regression.

• Therefore, TSS− RSS measures the amount of variance explained by the
regression.

• Consequently, 𝑅2 measures the proportion of variance in 𝑦 that is explained
by the regression.

To understand 𝑅2 further, we consider two special cases of the linear regression
with one predictor: ̂𝑦 = ̂𝑎 + ̂𝑏𝑥.

• If the fitted line is the same as the horizontal line, that is, ̂𝑦𝑖 = ̄𝑦 for all 𝑖,
then RSS = TSS. So when the fitted model does not explain any of the
variance in 𝑦, we have 𝑅2 = 0.

67



• Suppose that the fitted line passes through all the points perfectly, so the
residuals are all zeros. In this case, RSS = 0 and so 𝑅2 = 1. Thus, 𝑅2 = 1
indicates that the regression line explains all of the variance in 𝑦.

6.5.1 Bayesian 𝑅2

There is one problem of using 𝑅2 for Bayesian regression: 𝑅2 is only guaranteed
to be non-negative when ̂𝑦𝑖 are predictions from the model with OLS coefficients.
In general, however, we can have a regression model with a negative $R2$. At
an extreme, one can think of a linear model that is very far away from the data.
Since the simulated coefficients from the Bayesian regression are not necessarily
OLS, 𝑅2 of the corresponding models might be negative. To this end, Gelman
et al. (2019) proposed an alternative definition of 𝑅2 for Bayesian regression:

𝑅2
Bayes =

1
𝑛−1 ∑𝑖( ̂𝑦𝑖 − ̄̂𝑦)2

1
𝑛−1 ∑𝑖( ̂𝑦𝑖 − ̄̂𝑦)2 + 𝜎2 = Explained variance

Explained variance+ Residual variance ,

where ̄ ̂𝑦 is the mean of ̂𝑦𝑖’s. Thus, 𝑅2
Bayes is always between 0 and $1$. Again,

𝑅2
Bayes = 0 if the fitted model is a horizontal line and 𝑅2

Bayes is close to 1 when
the explained variance dominates the residual variance.

In practice, we compute 𝑅2
Bayes for each simulation of the coefficients and 𝜎 to

obtain the posterior distribution of 𝑅2
Bayes. This can be done in the rstanarm

library by calling bayes_R2 on a fitted model. To obtain a point estimate one
can compute the median of the simulated values. For example, let us take the
model of KidIQ with and without an interaction term from above.

R2_sims = bayes_R2(fit_3)
print(R2_sims[1:10])

[1] 0.2322517 0.2087863 0.2294476 0.1647310 0.2443818 0.1713001 0.1666030
[8] 0.2082350 0.2492992 0.1665608

cat("A point estimate of Bayesian R2 is: ", median(R2_sims))

A point estimate of Bayesian R2 is: 0.2142677

R2_sims = bayes_R2(fit_4)
print(R2_sims[1:10])

[1] 0.1943837 0.2383272 0.2562779 0.2541789 0.2260046 0.2419281 0.2481928
[8] 0.2294875 0.2716983 0.2399899
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cat("A point estimate of Bayesian R2 is: ", median(R2_sims))

A point estimate of Bayesian R2 is: 0.2298335

The results show that 𝑅2
Bayes of the model with an interaction term is larger

than that without an interaction term.

6.6 Cross validation
A model should be evaluated on how well they make predictions on new data.
However, sometimes we would like to evaluate and compare models without
waiting for new data. One can instead hold out a subset of existing data, train
the model on the remaining data, and then evaluate on the held-out data: this
is called cross validation.

6.6.1 Leave-one-out cross validation
In leave-one-out cross validation (LOO), the model is fitted on all but a single
data point, and then it is evaluated on that data point. We suggest two ways
of evaluating the model:

6.6.1.1 1. Log score and deviance

Suppose that 𝛽𝑖 and 𝜎𝑖 are the parameters fitted on the data consisting of all
but the 𝑖-th data point. The likelihood of the 𝑖-th data point (𝑋𝑖, 𝑦𝑖) is

𝑝(𝑦𝑖 ∣ 𝛽𝑖, 𝜎𝑖) =
1√
2𝜋𝜎𝑖

exp(− 1
2𝜎2

𝑖
(𝑦𝑖 −𝑋𝑖𝛽𝑖)2) .

A larger likelihood suggests a better fit of the model to this data point. The log
score is the log of the likelihood without the constant term:

− log𝜎𝑖 −
1

2𝜎2
𝑖
(𝑦𝑖 −𝑋𝑖𝛽𝑖)2.

We perform LOO for all data points. The model’s performance is measured by
taking the sum of the log scores. This is called the expected log predictive density
(elpd).

elpd =
𝑛

∑
𝑖=1

− log𝜎𝑖 −
1

2𝜎2
𝑖
(𝑦𝑖 −𝑋𝑖𝛽𝑖)2.

To compare the performance between two models, we compare their elpd.
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The exact computation of elpd is quite slow since it requires fitting the model 𝑛
times. The loo function in R implement an approximation of elpd that is much
faster to compute.

As an example, we compute the elpd of the following model:

kid_score = mom_iq.

fit_1 <- stan_glm(kid_score ~ mom_hs, data=kidiq,
refresh=0)

loo_1 <- loo(fit_1)
print(loo_1)

Computed from 4000 by 434 log-likelihood matrix

Estimate SE
elpd_loo -1914.8 13.8
p_loo 3.1 0.3
looic 3829.6 27.6
------
Monte Carlo SE of elpd_loo is 0.0.

All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.

The output can be interpreted as follows:

• elpd_loo is the estimated elpd along with a standard error representing
uncertainty due to using only 434 data points.

• p_loo is the estimated “effective number of parameters” in the model,
which is essentially the number of parameters that accounts for informa-
tion in the prior and the data. The above model has 3 parameters, so it
makes sense that p_loo is close to 3 here.

• looic is the LOO information criterion, which is −2×elpd_loo.

Let us compare fit_1 with fit_3: kid_score = mom_iq+mom_hs.

loo_3 <- loo(fit_3)
print(loo_3)

Computed from 4000 by 434 log-likelihood matrix

Estimate SE
elpd_loo -1876.0 14.2
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p_loo 4.0 0.4
looic 3752.0 28.5
------
Monte Carlo SE of elpd_loo is 0.0.

All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.

We can see that fit_3’s elpd of -1875.9 is higher than fit_1’s elpd of -1914.8.
This suggests that fit_3’s posterior predictive distribution matches the data
better than that of fit_1.

To also obtain the standard error of the difference in elpd between fit_3 and
fit_1, we can use the loo_compare function.

loo_compare(loo_3, loo_1)

elpd_diff se_diff
fit_3 0.0 0.0
fit_1 -38.8 8.3

The output tells us that fit_1’s elpd is 39.0 smaller than that of fit_3, with
the standard error of the difference equals 8.4. As a rule of thumb, if eldp_diff
is greater than 4, the number of observations is greater than 100, and the model
is not badly misspecified, then se_diff is a reliable measure of uncertainty in
the difference between elpd’s.

Let us compare the eldp between fit_3, the model with two predictors and no
interaction term, and fit_4, the model with two predictors and an interaction
term.

loo_4 <- loo(fit_4)

loo_compare(loo_3, loo_4)

elpd_diff se_diff
fit_4 0.0 0.0
fit_3 -3.4 2.7

The difference is less than 4, so there is no clear improvement by adding the
interaction term.

71



Chapter 7

Logarithmic
transformations

We might want to try a logarithmic transformation when

• Additivity and linearity are not reasonable assumptions.
• The outcomes are all positive.

In this case, we run the regression with log 𝑦𝑖 as target values:

log 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +…+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖.

To obtain a model that predicts the outcome from the input, we exponentiate
both sides of the equation.

𝑦𝑖 = 𝑒𝛽0+𝛽1𝑥𝑖1+…+𝛽𝑝𝑥𝑖𝑝+𝜀𝑖

= 𝐵0𝐵𝑋𝑖1
1 …𝐵𝑋𝑖𝑝

𝑝 𝐸𝑖,

where 𝐵0 = 𝑒𝛽0 , 𝐵1 = 𝑒𝛽1 ,….

Consider the logarithmic regression on the Earnings data. This can be done in
are by simply replacing earn in the formula by log(earn) (notice that we only
regress on the subset of earn > 0.

library(rstanarm)
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earnings = read.csv("data/earnings.csv")

head(earnings)

height weight male earn earnk ethnicity education mother_education
1 74 210 1 50000 50 White 16 16
2 66 125 0 60000 60 White 16 16
3 64 126 0 30000 30 White 16 16
4 65 200 0 25000 25 White 17 17
5 63 110 0 50000 50 Other 16 16
6 68 165 0 62000 62 Black 18 18
father_education walk exercise smokenow tense angry age

1 16 3 3 2 0 0 45
2 16 6 5 1 0 0 58
3 16 8 1 2 1 1 29
4 NA 8 1 2 0 0 57
5 16 5 6 2 0 0 91
6 18 1 1 2 2 2 54

logmodel_1 <- stan_glm(log(earn) ~ height, data=earnings,
subset=earn>0, refresh=0)

print(logmodel_1)

stan_glm
family: gaussian [identity]
formula: log(earn) ~ height
observations: 1629
predictors: 2
subset: earn > 0

------
Median MAD_SD

(Intercept) 5.9 0.4
height 0.1 0.0

Auxiliary parameter(s):
Median MAD_SD

sigma 0.9 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Here are what the plot of this model on the log scale and the original scale.
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plot(earnings$height, log(earnings$earn), pch=20,
xlab="height", ylab="log(earnings)")

abline(coef(logmodel_1))
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beta = coef(logmodel_1)

plot(earnings$height, earnings$earn, pch=20,
xlab="height", ylab="earnings")

curve(exp(beta[1] + beta[2]*x), add=TRUE)
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In the latter plot, the curve is moving upwards like an exponential function.
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7.1 Interpreting the coefficients
The fitted model from the logarithmic regression above is

log(earnings) = 5.9 + 0.1 ∗ height,

This model suggests that, for two people, say 𝐴 and 𝐵, whose heights differ by
1, their log-earnings differ by 0.1 on average:

log(earnings𝐴) − log(earnings𝐵) = 0.1

log(earnings𝐴
earnings𝐵

) = 0.1

earnings𝐴
earnings𝐵

= 𝑒0.1 ≈ 1.1,

Here, we have used an approximation 𝑒𝑥 ≈ 1 + 𝑥, which is reasonably accurate
for 𝑥 < 1.
From this, we can interpret the slope of 0.1 as follows:

1 inch increase in height corresponds to an expected 10% increase in
earnings.

Such possible interpretation is why we have (implicitly) used the logarithms
base 𝑒 instead of base $10$. If we were to use base 10, we would instead obtain
earnings𝐴
earnings𝐵

= 10 ̂𝛽1 where ̂𝛽1 is the slope from fitting the regression with logarithms
base 10. In this case, we cannot estimate the percentage increase in earnings
just by looking at the coefficient.

7.1.1 When there are zero-valued outcomes
Sometimes, we might face a situation where some of the outcomes are zeros,
which cannot take the logarithm directly. One way to model such data is by
running a classification model that can classify whether an instance has non-
zero outcome (for example, a linear regression model, which will be introduced
next chapter). We then use this model to tell us whether a new data point has
non-zero outcome. If that is the case, then we use the fitted logarithmic model
to predict the actual value of the outcome.

7.2 Model checking with simulations
We will compare the logarithmic regression with the linear regression by repli-
cating a dataset from each model and compare it to the observed dataset.

We first fit the linear model.
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fit_1 <- stan_glm(earn ~ height, data=earnings,
subset=earn>0, refresh=0)

and then we simulate outcomes from the posterior predictive distribution.

yrep_1 <- posterior_predict(fit_1)
n_sims <- nrow(yrep_1) # number of rows in the simulation
subset <- sample(n_sims, 100) # randomly pick 100 rows
yrep_1_100 <- yrep_1[subset,] # pick rows of yrep_1 by row indices in subset

There is a convenient library bayesplot that allows us to make density plots of
the simulations and the data via ppc_dens_overlay function.

library(bayesplot)

ppc_dens_overlay(earnings$earn[earnings$earn>0], yrep_1[subset,])

0e+00 1e+05 2e+05 3e+05 4e+05

y
yrep

We can see that the distributions do not quite match as the observed data is
more concentrated and is non-negative.

Now let us try the same for the logarithmic model.
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yrep_log_1 <- posterior_predict(logmodel_1)
n_sims <- nrow(yrep_log_1) # number of rows in the simulation
subset <- sample(n_sims, 100) # randomly pick 100 rows
yrep_log_1_100 <- yrep_log_1[subset,] # pick rows by list of indices in subset

ppc_dens_overlay(log(earnings$earn[earnings$earn>0]), yrep_log_1_100)

6 8 10 12 14

y
yrep

Visually, the logarithmic model has a better fit than the linear model.

7.3 elpd for the logarithmic regression
First, let us look at the elpd between the linear and logarithmic model.

loo_1 = loo(fit_1)

Warning: Found 1 observation(s) with a pareto_k > 0.7. We recommend calling 'loo' again with argument 'k_threshold = 0.7' in order to calculate the ELPD without the assumption that these observations are negligible. This will refit the model 1 times to compute the ELPDs for the problematic observations directly.

print(loo_1)

Computed from 4000 by 1629 log-likelihood matrix

Estimate SE
elpd_loo -18608.4 165.4
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p_loo 26.5 19.7
looic 37216.7 330.7
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 1628 99.9% 876
(0.5, 0.7] (ok) 0 0.0% <NA>
(0.7, 1] (bad) 0 0.0% <NA>
(1, Inf) (very bad) 1 0.1% 7

See help('pareto-k-diagnostic') for details.

loo_log_1 = loo(logmodel_1)
print(loo_log_1)

Computed from 4000 by 1629 log-likelihood matrix

Estimate SE
elpd_loo -2100.6 38.8
p_loo 3.9 0.4
looic 4201.1 77.6
------
Monte Carlo SE of elpd_loo is 0.0.

All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.

Notice that elpd_loo between these two models are on different scales; this is
because the likelihood of the linear model and the transformed model are totally
different, and we have to make correction for this difference in the computation
of LOO. Initially, the equation for a logarithmic model is:

log 𝑦 = 𝛽0 + 𝛽1𝑥1 +…+ 𝛽𝑝𝑥𝑝 + 𝜀 = 𝑋𝛽 + 𝜀, 𝜀 ∼ 𝒩(0, 𝜎2).

Define a new random variable 𝑧 = log 𝑦. The equation above tells use that

𝑧 ∼ 𝒩(𝑋𝛽, 𝜎2).

To obtain the elpd of the logarithmic model, we need to compute the density
𝑝(𝑦 ∣ 𝛽, 𝜎,𝑋). This can be achieved by applying the change-of-variable formula
between two variables 𝑦 and 𝑧.

𝑝(𝑦 ∣ 𝛽, 𝜎,𝑋) = 𝑝(𝑧 ∣ 𝛽, 𝜎,𝑋) ∣𝑑𝑧𝑑𝑦 ∣ =
1
𝑦𝑝(𝑧 ∣ 𝛽, 𝜎,𝑋).
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Here, |𝑦| = 𝑦 since we assume that 𝑦 is positive. Thus, for a held-out data point
(𝑋𝑖, 𝑦𝑖), with 𝑧𝑖 = log 𝑦𝑖, the log-likelihood of this point is

log 𝑝(𝑦𝑖 ∣ 𝛽, 𝜎,𝑋𝑖) = log 𝑝(𝑧𝑖 ∣ 𝛽, 𝜎,𝑋𝑖)⏟⏟⏟⏟⏟⏟⏟
elpd of log𝑦𝑖

− log 𝑦𝑖.

In other words, we can make a correction for the elpd of the logarithmic model
by subtracting log 𝑦𝑖 for each instance (𝑋𝑖, 𝑦𝑖).
We can inspect the elpd of each instance by calling pointwise attribute of the
loo result. The following code shows the first five rows of the elpd from the
logarithmic regression:

print(loo_log_1$pointwise[1:5,])

elpd_loo mcse_elpd_loo p_loo looic influence_pareto_k
[1,] -1.1011337 0.0006686739 0.0017736218 2.202267 0.01135110
[2,] -1.9367326 0.0007254570 0.0020959857 3.873465 0.06864000
[3,] -1.1537610 0.0004255231 0.0007318929 2.307522 -0.10228210
[4,] -0.9577587 0.0003146193 0.0003845926 1.915517 -0.15439004
[5,] -1.9174803 0.0009185109 0.0034125379 3.834961 -0.07356066

From this, we can subtract log 𝑦𝑖 (earn in this case) from the elpd_loo (first
column).

loo_log_1$pointwise[,1] <- loo_log_1$pointwise[,1] - log(earnings$earn[earnings$earn>0])

We can now sum elpd_loo over all instances.

elpd_with_correction <- sum(loo_log_1$pointwise[,1])
print(elpd_with_correction)

[1] -17932.98

The elpd is now in the same scale as the linear model. We can now compare
the elpd between the linear and logarithmic model.

loo_compare(loo_log_1, loo_1)

Warning: Not all models have the same y variable. ('yhash' attributes do not
match)

elpd_diff se_diff
logmodel_1 0.0 0.0
fit_1 -675.4 153.1
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7.4 Log-log model
If the log transformation is applied to both an input variable and the outcome,
the coefficient can be interpreted as the percentage difference in 𝑦 per percentage
difference in 𝑥.
Let us try this technique on the Earnings data.

logmodel_5 <- stan_glm(log(earn) ~ log(height) + male, data=earnings,
subset=earn>0, refresh=0)

print(logmodel_5)

stan_glm
family: gaussian [identity]
formula: log(earn) ~ log(height) + male
observations: 1629
predictors: 3
subset: earn > 0

------
Median MAD_SD

(Intercept) 2.8 2.2
log(height) 1.6 0.5
male 0.4 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 0.9 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

• The coefficient 1.6 of log(height) implies that 1% increase in height corre-
sponds to 1.6% increase in earnings.

• The coefficient 0.4 of male implies that, on average, a male earns 40%
more than a female with the same height.

80



Chapter 8

Comparing regression
models

General principles

1. Use prior knowledge to pick relevant input variables.
2. For inputs that have large effects, consider including their interactions.
3. If the coefficient of a predictor has a small standard error, then we might

want to keep it in the model.
4. If the coefficient of a predictor has a large standard error, and there is no

reason for the predictor in the model, then we might want to remove it.
5. If a coefficient contradicts the reality (for example, a negative coefficient

for education in an income regression),
• If the standard error is large, then the unusual estimate can be ex-

plained from its uncertainty.
• If the standard error is small, try to understand how it could happen.

In the income vs. education example, the negative coefficient might
be because the data was collected from a subpopulation in which
the more educated people are younger and hence tend to have lower
average income.

8.1 Example: predicting the yields of mesquite
bushes

We apply the model checking techniques to Mesquite data, which is used to
estimate the weight (in grams) of yield harvested from a mesquite bush.
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Figure 8.1: A mesquite tree

mesquite <- read.table("data/mesquite.dat",
header=TRUE)

head(mesquite)

obs group diam1 diam2 total_height canopy_height density weight
1 1 MCD 1.8 1.15 1.30 1.00 1 401.3
2 2 MCD 1.7 1.35 1.35 1.33 1 513.7
3 3 MCD 2.8 2.55 2.16 0.60 1 1179.2
4 4 MCD 1.3 0.85 1.80 1.20 1 308.0
5 5 MCD 3.3 1.90 1.55 1.05 1 855.2
6 6 MCD 1.4 1.40 1.20 1.00 1 268.7

The input variables are:

Variable name Description
diam1 diameter along the longer axis of the canopy (meters)
diam2 diameter along the shorter axis of the canopy (meters)
canopy_height height of the canopy (meters)
total_height total height of the bush
density number of primary stems per plant unit
group MCD or ALS, indicating two different times of measurement
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To start off, we regress weight on all of the predictors.

library(rstanarm)

fit_1 <- stan_glm(weight ~ diam1 + diam2 + canopy_height +
total_height + density + group,
data=mesquite, refresh=0)

print(fit_1)

stan_glm
family: gaussian [identity]
formula: weight ~ diam1 + diam2 + canopy_height + total_height + density +

group
observations: 46
predictors: 7

------
Median MAD_SD

(Intercept) -1091.3 183.8
diam1 190.5 111.8
diam2 370.8 128.4
canopy_height 355.2 209.1
total_height -103.7 188.6
density 131.8 34.4
groupMCD 362.7 99.9

Auxiliary parameter(s):
Median MAD_SD

sigma 272.7 31.7

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

We evaluate this model using elpd.

loo_1 <- loo(fit_1)

Warning: Found 2 observation(s) with a pareto_k > 0.7. We recommend calling 'loo' again with argument 'k_threshold = 0.7' in order to calculate the ELPD without the assumption that these observations are negligible. This will refit the model 2 times to compute the ELPDs for the problematic observations directly.

print(loo_1)

Computed from 4000 by 46 log-likelihood matrix
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Estimate SE
elpd_loo -334.1 12.6
p_loo 16.0 8.5
looic 668.2 25.1
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 43 93.5% 779
(0.5, 0.7] (ok) 1 2.2% 136
(0.7, 1] (bad) 1 2.2% 18
(1, Inf) (very bad) 1 2.2% 4

See help('pareto-k-diagnostic') for details.

Three instances with �̂� > 0.7 indicate that the approximate elpd computation
might not be accurate. Aki Vehtari has provided a quick guideline on how to
diagnose the model from p_loo and Pareto �̂� values:

• If all Pareto k small, model is likely to be ok (although there
can be better models)

• If high Pareto k values

– If p_loo « the number of parameters p, then the model
is likely to be misspecified. PPC is likely to detect the
problem, too. Try using overdispersed model, or add more
structural information (nonlinearity, mixture model, etc.).

– If p_loo > the number of parameters p, then the model is
likely to be badly misspecified. If the number of parameters
p«n, then PPC is likely to detect the problem, too. Case ex-
ample https://rawgit.com/avehtari/modelselection_tutorial/master/roaches.html
189

– If p_loo > the number of parameters p, then the model is
likely to be badly misspecified. If the number of parame-
ters p is relatively large compared to the number of obser-
vations p>n/5 (more accurately we should count number
of observations influencing each parameter as in hierarchi-
cal models some groups may have small n and some groups
large n), it is possible that PPC doesn’t detect the prob-
lem. Case example Recommendations for what to do when
k exceeds 0.5 in the loo package? 299

– If p_loo < the number of parameters p and the number
of parameters p is relatively large compared to the
number of observations p>n/5, it is likely that model
is so flexible or population prior is so weak that it’s
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difficult to predict for left out observation even if the
model is true one. Case example is the simulated 8
schools in https://arxiv.org/abs/1507.04544 90 and Gaus-
sian processes and spatial models with short correlation
lengths.

Let us compare try fitting a logarithmic model. Again, since group is categorical,
we do not apply the logarithmic transformation to this predictor.

fit_2 <- stan_glm(log(weight) ~ log(diam1) + log(diam2) +
log(canopy_height) + log(total_height) +
log(density) + group,
data=mesquite, refresh=0)

print(fit_2)

stan_glm
family: gaussian [identity]
formula: log(weight) ~ log(diam1) + log(diam2) + log(canopy_height) +

log(total_height) + log(density) + group
observations: 46
predictors: 7

------
Median MAD_SD

(Intercept) 4.8 0.2
log(diam1) 0.4 0.3
log(diam2) 1.1 0.2
log(canopy_height) 0.4 0.3
log(total_height) 0.4 0.3
log(density) 0.1 0.1
groupMCD 0.6 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 0.3 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

loo_2 <- loo(fit_2)

Warning: Found 1 observation(s) with a pareto_k > 0.7. We recommend calling 'loo' again with argument 'k_threshold = 0.7' in order to calculate the ELPD without the assumption that these observations are negligible. This will refit the model 1 times to compute the ELPDs for the problematic observations directly.
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print(loo_2)

Computed from 4000 by 46 log-likelihood matrix

Estimate SE
elpd_loo -19.4 5.3
p_loo 7.6 1.6
looic 38.9 10.7
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 43 93.5% 1046
(0.5, 0.7] (ok) 2 4.3% 427
(0.7, 1] (bad) 1 2.2% 395
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.

The approximate elpd of this model is more reliable than the previous one. Now
we adjust loo_2 for the logarithmic transformation by subtracting the log score
of each instance by the logarithm of its weight.

loo_2a = loo_2

loo_2a$pointwise[,1] <- loo_2a$pointwise[,1] - log(mesquite$weight)
sum(loo_2a$pointwise[,1])

[1] -291.7312

loo_compare(loo_1, loo_2a)

Warning: Not all models have the same y variable. ('yhash' attributes do not
match)

elpd_diff se_diff
fit_2 0.0 0.0
fit_1 -42.4 10.9

The elpd of the logarithmic model is larger than the linear model, so we continue
with the logarithmic model.

We can also simulated a dataset from each model and compare it with the
original dataset.
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library(bayesplot)

yrep_1 <- posterior_predict(fit_1)
n_sims <- nrow(yrep_1)
subset <- sample(n_sims, 100)
ppc_dens_overlay(mesquite$weight, yrep_1[subset,])

−1000 0 1000 2000 3000 4000

y
yrep

yrep_2 <- posterior_predict(fit_2)
ppc_dens_overlay(log(mesquite$weight), yrep_2[subset,])
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The density plots show that the fit on the log scale is much better.

8.1.1 Constructing a simpler model
We have been throwing all predictors in our model. But sometimes we might
want to look for a simpler model that is more interpretable. For example, we
can create a new predictor that measures the volume of the canopy:

canopy_volume = diam1 ∗ diam2 ∗ canopy_height.

The technique of creating a new predictor from the old ones, in machine learning
terms, is called feature engineering.

mesquite$canopy_volume <- mesquite$diam1 * mesquite$diam2 * mesquite$canopy_height

fit_3 <- stan_glm(log(weight) ~ log(canopy_volume), data=mesquite,
refresh=0)

print(fit_3)

stan_glm
family: gaussian [identity]
formula: log(weight) ~ log(canopy_volume)
observations: 46
predictors: 2
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------
Median MAD_SD

(Intercept) 5.2 0.1
log(canopy_volume) 0.7 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 0.4 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Let us compare this model with the previous logarithm model with all predictors.

loo_3 <- loo(fit_3)

loo_compare(loo_2, loo_3)

elpd_diff se_diff
fit_2 0.0 0.0
fit_3 -7.2 5.0

There is only 7.4 difference in the estimated elpd but this new model is much
easier to interpret.

Let us add more predictors: one is canopy_shape, which measures the ratio
between the two diameters

canopy_shape = diam1/diam2,

and the others are total_height, density and group. We take an educated
guess that having the ratio of diameters close to one is a sign of a healthy
mesquite bush; thus if the predictors are not correlated, we expect the coefficient
of canopy_shape to be negative.

mesquite$canopy_shape <- mesquite$diam1 / mesquite$diam2

fit_4 <- stan_glm(log(weight) ~ log(canopy_volume) + log(canopy_shape) +
log(total_height) + log(density) + group,
data=mesquite, refresh=0)

print(fit_4)

stan_glm
family: gaussian [identity]
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formula: log(weight) ~ log(canopy_volume) + log(canopy_shape) + log(total_height) +
log(density) + group

observations: 46
predictors: 6

------
Median MAD_SD

(Intercept) 4.9 0.1
log(canopy_volume) 0.7 0.1
log(canopy_shape) -0.5 0.2
log(total_height) 0.2 0.3
log(density) 0.1 0.1
groupMCD 0.6 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 0.3 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

As before, we will compare with model with the full logarithmic model.

loo_4 <- loo(fit_4)

loo_compare(loo_2, loo_4)

elpd_diff se_diff
fit_4 0.0 0.0
fit_2 -0.1 1.2

The estimated difference of eldp is insignificant. However, the standard errors
of total_height and density are large, so we might want to remove these
predictors from the model.

Finally, we are left with a model with three predictors:

fit_5 <- stan_glm(log(weight) ~ log(canopy_volume) + log(canopy_shape) +
group, data=mesquite, refresh=0)

print(fit_5)

stan_glm
family: gaussian [identity]
formula: log(weight) ~ log(canopy_volume) + log(canopy_shape) + group
observations: 46
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predictors: 4
------

Median MAD_SD
(Intercept) 4.9 0.1
log(canopy_volume) 0.8 0.1
log(canopy_shape) -0.4 0.2
groupMCD 0.6 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 0.3 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

loo_5 <- loo(fit_5)

loo_compare(loo_2, loo_5)

elpd_diff se_diff
fit_5 0.0 0.0
fit_2 -1.4 1.5

In the end, we obtain a simple model with three predictors that performs as
well as the full logarithmic model.

We can try adding more predictors or interaction terms but it would take a
substantial amount of work to find a model that performs significantly better.
Alternatively, one can try a different prior or a more complex model, such as a
multilevel model.

8.2 Different priors for the coefficients
In the previous section, we have implicitly used the weakly informative prior for
the coefficients.

We work on an example of predicting grades from a sample of high school
students from Portugal.

data <- read.csv("data/student-merged.csv")

head(data)

G1mat G2mat G3mat G1por G2por G3por school sex age address famsize Pstatus
1 7 10 10 13 13 13 0 0 15 0 0 1
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2 8 6 5 13 11 11 0 0 15 0 0 1
3 14 13 13 14 13 12 0 0 15 0 0 1
4 10 9 8 10 11 10 0 0 15 0 0 1
5 10 10 10 13 13 13 0 0 15 0 0 1
6 12 12 11 11 12 12 0 0 15 0 0 1
Medu Fedu traveltime studytime failures schoolsup famsup paid activities

1 1 1 2 4 1 1 1 1 1
2 1 1 1 2 2 1 1 0 0
3 2 2 1 1 0 1 1 1 1
4 2 4 1 3 0 1 1 1 1
5 3 3 2 3 2 0 1 1 1
6 3 4 1 3 0 1 1 1 1
nursery higher internet romantic famrel freetime goout Dalc Walc health

1 1 1 1 0 3 1 2 1 1 1
2 0 1 1 1 3 3 4 2 4 5
3 1 1 0 0 4 3 1 1 1 2
4 1 1 1 0 4 3 2 1 1 5
5 1 1 1 1 4 2 1 2 3 3
6 1 1 1 0 4 3 2 1 1 5
absences

1 2
2 2
3 8
4 2
5 8
6 2

We will predict the third period math grade given the other predictors.

predictors <- c("school","sex","age","address","famsize","Pstatus","Medu","Fedu",
"traveltime","studytime","failures","schoolsup","famsup","paid","activities",
"nursery", "higher", "internet", "romantic","famrel","freetime","goout","Dalc",
"Walc","health","absences")
data_G3mat <- subset(data, subset=G3mat>0, select=c("G3mat",predictors))

Let us try the standard regression model

fit1 <- stan_glm(G3mat ~ ., data=data_G3mat, refresh=0)

We plot the posterior distributions of the coefficients using the mcmc_areas
function from bayesplot library.

p1 <- mcmc_areas(as.matrix(fit1), pars=vars(-‘(Intercept)’,-sigma),

prob_outer=0.95, area_method = “scaled height”)

p1
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p1 <- mcmc_areas(as.matrix(fit1), pars=vars(-'(Intercept)',-sigma),
prob_outer=0.95, area_method = "scaled height")

p1

absences
health
Walc
Dalc

goout
freetime

famrel
romantic
internet

higher
nursery

activities
paid

famsup
schoolsup

failures
studytime
traveltime

Fedu
Medu

Pstatus
famsize
address

age
sex

school

−2 0 2

The different amounts of uncertainty make it difficult to compare the coefficients.
For example, it is really hard to see if absences is more relevant than health.

To compare between two predictors, we have to transform them so that they
share the same scale. The common scaling technique is standardization, which
consists of subtracting the observed values of each predictor by the mean, and
then dividing by the sample standard deviation:

𝑥 → 𝑥 − ̄𝑥
sd(𝑥) .

With this transformation, all predictors now have a mean of zero and a sample
standard deviation of one.

In R, we can standardize all predictors by using the scale function.

datastd_G3mat <- data_G3mat
datastd_G3mat[,predictors] <-scale(data_G3mat[,predictors])

Now, let us fit the model on the standardized data and plot the coefficients
again.
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fit2 <- stan_glm(G3mat ~ ., data=datastd_G3mat, refresh=0)

p2 <- mcmc_areas(as.matrix(fit2), pars=vars(-'(Intercept)',-sigma),
prob_outer=0.95, area_method = "scaled height")

p2
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Fedu
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Pstatus
famsize
address

age
sex

school

−1.0 −0.5 0.0 0.5

The standard errors of the coefficients are now similar to each others. We can
see that absences is more relevant than many of the predictors.

8.2.1 Priors for variable selection
To obtain a simpler model, we may assume that only some of the predictors
are relevant, while the other predictors are negligible. One way to insert this
assumption into the model is by using a prior whose distribution has a sharp
peak around zero; examples of such priors are regularized horseshoe prior and
Laplace prior.

8.2.1.1 Regularized horseshoe prior

The regularized horseshoe prior, as shown in the plot above, consists of prior
𝒩(0, 𝜏2𝜆2

𝑗 ) for the 𝑗-th coefficient. Here, and 𝜆𝑗 is with the following priors:

1. 𝜏 is a global scale that shrinks all 𝛽𝑗 towards zero. The prior for 𝜏 is

Half-Cauchy (0, global_scale) .
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Figure 8.2: Priors for variable selection
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A common choice for the global scale is

global_scale = 𝑝0
𝑝 − 𝑝0

𝜎√𝑛,

where 𝑝 is the number of predictors, 𝑝0 is the expected number of relevant
predictors, 𝜎 is the model’s estimated standard deviation, and 𝑛 is the
number of observations.

2. 𝜆𝑗 is a local scale that allows some 𝛽𝑗 to escape the shrinkage. The prior
for 𝜆𝑗 is

Half-Cauchy (0, slab_scale) .

A common choice for the slab scale is

slab_scale = √�̂�2

𝑝0
sd(𝑦),

where �̂�2 is an estimated proportion of variance explained by the model.
With this choice of slab scale, the variance of the linear model, with the
coefficients sampled from the priors and the predictors with zero mean
and standard deviation 1, is precisely �̂�2Var(𝑦):

Var (𝛽0 + 𝛽1𝑥1 +…+ 𝛽𝑝0
𝑥𝑝0

) = Var(𝛽1)Var(𝑥𝑖) + …+Var(𝛽𝑝)Var(𝑥𝑝)

= �̂�2

𝑝0
Var(𝑦) + …+ �̂�2

𝑝0
Var(𝑦)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝0 terms

= �̂�2Var(𝑦).

Below is an example of linear regression with the regularized horseshoe prior
with 𝑝0 = 6 and �̂�2 = 0.3 (make sure that the data is standardized!):

p <- length(predictors)
n <- nrow(datastd_G3mat)
p0 <- 6
R2_hat <- 0.3
slab_scale <- sqrt(R2_hat/p0)*sd(datastd_G3mat$G3mat)
# global scale without sigma, as the scaling by sigma is done inside stan_glm
global_scale <- (p0/(p - p0))/sqrt(n)

fit3 <- stan_glm(G3mat ~ ., data=datastd_G3mat,
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prior=hs(global_scale=global_scale, slab_scale=slab_scale),
refresh=0)

print(fit3)

stan_glm
family: gaussian [identity]
formula: G3mat ~ .
observations: 343
predictors: 27

------
Median MAD_SD

(Intercept) 11.6 0.2
school -0.1 0.1
sex 0.2 0.2
age -0.1 0.2
address 0.1 0.1
famsize 0.0 0.1
Pstatus 0.0 0.1
Medu 0.2 0.2
Fedu 0.1 0.2
traveltime 0.0 0.1
studytime 0.1 0.2
failures -0.6 0.2
schoolsup -0.7 0.2
famsup -0.1 0.1
paid -0.1 0.2
activities 0.0 0.1
nursery 0.0 0.1
higher 0.0 0.1
internet 0.1 0.2
romantic 0.0 0.1
famrel 0.0 0.1
freetime 0.0 0.1
goout -0.3 0.2
Dalc 0.0 0.1
Walc -0.2 0.2
health -0.1 0.2
absences -0.5 0.2

Auxiliary parameter(s):
Median MAD_SD

sigma 2.9 0.1

------
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* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

We can see that most of the coefficient are zeros. The following distribution plots
show that most of the coefficients are shrunk towards zero, making it easier to
see relevant predictors.

p3 <- mcmc_areas(as.matrix(fit3), pars=vars(-'(Intercept)',-sigma),
prob_outer=0.95, area_method = "scaled height")

p3
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From this plot, we see that the most relevant predictors are failures,
schoolsup, goout and absences. Let us run the regression with only these
four variables.

fit4 <- stan_glm(G3mat ~ failures + schoolsup +
goout + absences, data=datastd_G3mat,
refresh=0)

print(fit4)

stan_glm
family: gaussian [identity]
formula: G3mat ~ failures + schoolsup + goout + absences
observations: 343
predictors: 5
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------
Median MAD_SD

(Intercept) 11.6 0.2
failures -0.8 0.2
schoolsup -0.7 0.2
goout -0.5 0.2
absences -0.6 0.2

Auxiliary parameter(s):
Median MAD_SD

sigma 3.0 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Not surprisingly, failures, goout and absences negatively affects the grades.
The same goes for schoolsup: a student who requires extra educational support
tends to perform worse than one who does not.

We compare its elpd to the model with all predictors.

loo2 <- loo(fit2)
loo4 <- loo(fit4)

loo_compare(loo2, loo4)

elpd_diff se_diff
fit4 0.0 0.0
fit2 -1.2 6.3

The model with only four predictors performs as well as the model with all
predictors.

8.2.1.2 LASSO regression

LASSO regression is the Bayesian regression with Laplace prior. To fit a LASSO
model, simply run stan_glm with prior=lasso(autoscale=TRUE).

fit5 <- stan_glm(G3mat ~ ., data=datastd_G3mat,
prior=lasso(autoscale=TRUE),
refresh=0)

print(fit5)

stan_glm
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family: gaussian [identity]
formula: G3mat ~ .
observations: 343
predictors: 27

------
Median MAD_SD

(Intercept) 11.6 0.2
school -0.1 0.1
sex 0.2 0.2
age -0.2 0.2
address 0.1 0.1
famsize 0.1 0.1
Pstatus 0.0 0.1
Medu 0.2 0.2
Fedu 0.2 0.2
traveltime 0.0 0.1
studytime 0.2 0.2
failures -0.5 0.2
schoolsup -0.7 0.2
famsup -0.1 0.1
paid -0.2 0.2
activities 0.0 0.1
nursery 0.0 0.1
higher 0.0 0.1
internet 0.2 0.2
romantic -0.1 0.1
famrel 0.0 0.1
freetime 0.0 0.1
goout -0.3 0.2
Dalc 0.0 0.1
Walc -0.2 0.2
health -0.2 0.2
absences -0.5 0.2

Auxiliary parameter(s):
Median MAD_SD

sigma 2.9 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

which gives us almost the same model as the one with the horseshoe prior. In
general, the horseshoe prior is recommended over the LASSO.
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Part II

Generalized linear models
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In the previous part, we focused on linear models, which expect continuous
outcomes. In many scenarios, however, we would like to model binary outcomes,
such as having/not having lung cancer. In this part, we describe a model that
can take such outcomes, namely logistic regression. After that, we introduct a
large class of models called generalized linear models, which includes linear and
logistic regression as special cases.
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Chapter 9

Logistic regression

In this chapter we consider a prediction task with binary outcomes (0 or 1).
Our running example is the poll data obtained before the presidential election
in 1992. For each respondent 𝑖 in the poll, we label 𝑦𝑖 = 1 if he or she preferred
George Bush or 0 if he or she preferred Bill Clinton. We predict the preferences
from respondents’ income levels, measured on a five-point scale.

nes <- read.table("data/nes.txt")
nes92 <- nes[nes$year == 1992 &

!is.na(nes$rvote) &
!is.na(nes$dvote) &
(nes$rvote==1 | nes$dvote==1),]

head(nes92[, c("income", "rvote")])

income rvote
32093 4 1
32094 2 1
32096 1 0
32097 2 1
32098 3 0
32099 4 0

We first attempt to predict the label from the linear function of the predictor(s).

𝑋𝛽 = 𝛽0 + 𝛽1𝑥1 +…+ 𝛽𝑝𝑥𝑝,

where 𝑋 = (1, 𝑥1,… , 𝑥𝑝) and 𝛽 = (𝛽0,… , 𝛽𝑝). However, the range of the func-
tion is (−∞,∞). To map this range to (0, 1), we introduce the logit function:
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logit(𝑥) = log( 𝑥
1 − 𝑥) ,

which maps (0, 1) to (−∞,∞). What we need is the inverse of the logit function,
which is commonly called the logistic function:

logit−1(𝑥) = 𝑒𝑥
1 + 𝑒𝑥 .

We can access the logit and logistic functions in R with qlogis and plogis,
respectively.

logit <- qlogis
invlogit <- plogis

Below is the plot of the logit−1(𝑥). We can see that the function is bounded
above by 1, bounded below by 0, and is 0.5 at 0.

curve(invlogit(x), xlim=c(-6, 6))
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Here is the plot of logit−1(−𝑥):

curve(invlogit(-x), xlim=c(-6, 6))
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We propose a model for the probability of preferring George Bush over Bill
Clinton.

Pr(𝑦 = 1|𝛽,𝑋) = logit−1(𝑋𝛽) = logit−1(𝛽0 + 𝛽1 ∗ income). (9.1)

From the plots above, we see that:

• If 𝛽1 is positive then the probability increases with the income.

• If 𝛽1 is negative, then the probability decreases as income increases.

Under the logistic model (@eq-1), we can compute the conditional probability
that 𝑦 = 0.

Pr(𝑦 = 0|𝛽,𝑋) = 1 − logit−1(𝑋𝛽) = 1 − logit−1(𝛽0 + 𝛽1 ∗ income). (9.2)

Unlike the linear regression, there is no error term in this model.

9.1 Maximum likelihood for logistic regression
As in the linear regression, we fit the model by finding the parameters 𝛽 that
maximize the likelihood function. Given data (𝑋1, 𝑦1),… , (𝑋𝑛, 𝑦𝑛) and the
probability model (Equation 19.1) and (Equation 9.2) above, the likelihood
function of 𝛽 is

𝑝 (𝑦|𝛽,𝑋) = 𝑝 (𝑦1|𝛽,𝑋1) 𝑝 (𝑦2|𝛽,𝑋2)…𝑝 (𝑦𝑛|𝛽,𝑋𝑛)
= Pr (𝑦 = 𝑦1|𝛽,𝑋1)Pr (𝑦 = 𝑦2|𝛽,𝑋2)…Pr (𝑦 = 𝑦𝑛|𝛽,𝑋𝑛) .
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Replacing each term in the product using (Equation 19.1) and (Equation 9.2),
we can right the product in a compact form as

𝑝 (𝑦|𝛽,𝑋) =
𝑛
∏
𝑖=1

{logit−1(𝑋𝑖𝛽) if 𝑦𝑖 = 1
1 − logit−1(𝑋𝑖𝛽) if 𝑦𝑖 = 0

=
𝑛
∏
𝑖=1

(logit−1(𝑋𝑖𝛽))
𝑦𝑖 (1 − logit−1(𝑋𝑖𝛽))

1−𝑦𝑖 .

We then maximize this expression over 𝛽. However, unlike the linear regression,
using just standard calculus does not give us a closed-form solution. So we have
to resort to some optimization algorithm that converges to a stationary point
i.e. a point with zero partial derivatives. We will not discuss the algorithm here.
Optimization theory tells us the maximization problem has a unique solution,
unless there is colinearity or separation; we shall discuss these two conditions in
a later chapter.

9.2 Bayesian inference for logistic regression
What we have just discussed in the previous section can be extended to Bayesian
inference. As we have shown in Chapter 4, if the prior distributions of the param-
eters 𝛽 are uniform, then the vector ̂𝛽 that maximizes the posterior distribution
is the same as the maximum likelihood estimate.

The default prior in stan_glm is again a weakly informative prior, which imposes
the following prior distributions on the parameters:

• Each coefficient 𝛽𝑘 for 𝑘 = 1, 2,… , 𝑝 is given a normal prior
𝒩(0, (2.5/ sd(𝑥𝑘))2).

• The prediction at the mean 𝛽0 +𝛽1 ̄𝑥1 +…+𝛽𝑝 ̄𝑥𝑝 is given a normal prior
𝒩(0, 2.52).

But sometimes we have some prior information about the coefficients. For ex-
ample, in a logistic regression with one predictor: Pr(𝑦 = 1) = logit−1(𝑎 + 𝑏𝑥),
sometimes we expect 𝑦 to increase with 𝑥 (a classic example is 𝑥 = smoking and
𝑦 = cancer). So we shall impose a “soft constraint” on 𝑏 by giving it a normal
prior 𝒩(0.5, 0.52), which implies that 𝑏 has a really high chance to be between
0 and 1.

9.3 Fitting a logistic regression model in R
To fit the model using stan_glm, we specify the parameter family=binomial(link="logit").
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library(rstanarm)

fit_1 <- stan_glm(rvote ~ income, family=binomial(link="logit"),
data=nes92, refresh=0)

print(fit_1)

stan_glm
family: binomial [logit]
formula: rvote ~ income
observations: 1179
predictors: 2

------
Median MAD_SD

(Intercept) -1.4 0.2
income 0.3 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

We can plot the actual 𝑦𝑖 versus the predictions logit−1(−1.4 + 0.3𝑥) using the
invlogit function.

a <- coef(fit_1)[1]
b <- coef(fit_1)[2]

plot(nes92$income, nes92$rvote,
xlab="income", ylab="Pr(republican vote)")

curve(invlogit(a + b * x), add=TRUE)
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We can also plot with the parameter simulations to visualize the uncertainty in
the coefficients. In the following code, we sample 20 draws from 4000 simula-
tions.

sims_1 <- as.matrix(fit_1) # a matrix of parameter simulations
n_sims <- nrow(sims_1)

plot(nes92$income, nes92$rvote,
xlab="income", ylab="Pr(republican vote)")

for (j in sample(n_sims, 20)){
a <- sims_1[j, 1]
b <- sims_1[j, 2]
curve(invlogit(a + b * x), col="gray",

lwd=0.5, add=TRUE)
}
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If, for some reason, we believe that people with higher income levels tend to
prefer Bush over Clinton, then we might assume that the coefficient of income
is somewhere between 0 to 1. Therefore, we use 𝒩(0.5, 0.52) as a prior of the
coefficient.

fit_2 <- stan_glm(rvote ~ income, family=binomial(link="logit"),
data=nes92, prior=normal(0.5, 0.5),
refresh=0)

print(fit_2)

stan_glm
family: binomial [logit]
formula: rvote ~ income
observations: 1179
predictors: 2

------
Median MAD_SD

(Intercept) -1.4 0.2
income 0.3 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

However, since the dataset is large (1179 instances), the prior has visibly no
effect on the coefficient.

9.3.1 Interpreting the coefficients
From the fitted model Pr(𝑦 = 1) = logit−1(−1.4 + 0.3𝑥), we can interpret the
intercept and the slope as follows:

• Intercept: As 𝑦 = 1 corresponds to voting for Bush, the intercept −1.4
can be interpreted by assuming 𝑥 = 0. However, assuming so is insensible
as the income is on a 1-5 scale. Therefore, we have to indirectly interpret
the intercept by evaluating the probability at some other value of 𝑥. For
example, we can evaluate Pr(Bush support) at the average value of 𝑥.

mean_income <- mean(nes92$income)
cat("The mean income is", mean_income, "\n")

The mean income is 3.075488

invlogit(-1.4 + 0.3 * mean_income)
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[1] 0.3828772

which tells us that at the average value of 𝑥, the probability of voting for
Bush is 0.38.

• Slope: the positive slope implies that a respondent with a higher income
level is more likely to vote for Bush. We measure the difference in Pr(𝑦 =
1) for two respondents whose incomes differ by 1. Keep in mind that, as
logistic regression involves a nonlinear function, the difference does not
stay the same across different values of 𝑥. As an example, let us measure
the difference near the central value of 𝑥. Since ̄𝑥 = 3.1, we evaluate the
difference in the probabilities between 𝑥 = 2 and 𝑥 = 3.

logit−1(−1.4 + 0.3 ∗ 3) − logit−1(−1.4 + 0.3 ∗ 2) = 0.068.
Thus, a respondent with income level 3 has 0.068 more probability of
supporting Bush than one with income level 2.

9.3.1.1 Divide-by-4 rule for coefficient interpretation

If we look at the curve of the logistic function, we see that the slope of the curve
is maximized at the center. Thus the function logit−1(𝑎 + 𝑏𝑥) is maximized at
𝑎 + 𝑏𝑥 = 0. To find out the slope at this point, we take the derivative of this
function with respect to 𝑥.

𝑑
𝑑𝑥

𝑒𝑎+𝑏𝑥

1 + 𝑒𝑎+𝑏𝑥 = 𝑑
𝑑𝑥 (1 − 1

1 + 𝑒𝑎+𝑏𝑥) = 𝑏𝑒𝑎+𝑏𝑥

(1 + 𝑒𝑎+𝑏𝑥)2
.

Consequently, the slope at 𝑎 + 𝑏𝑥 = 0 is 𝑏/(1 + 1)2 = 𝑏/4. Therefore, we can
interpret 𝛽/4 as the maximum difference in Pr(𝑦 = 1) corresponding to a 1 unit
difference in 𝑥.
In our example, the slope is 0.3, which implies that a difference of 1 in income
category corresponds no more than 0.3/4 = 0.075 increase in probability of
supporting Bush.

9.4 Different types of predictions
9.4.1 Point prediction
Suppose that we observe a new vector input 𝑋new. Assuming the new data
follow the logistic model: Pr(𝑦new = 1|𝛽,𝑋new) = logit−1(𝑋new𝛽), a point
prediction is the expected value of 𝑦new with respect to the posterior distribution
of 𝛽.
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𝔼[𝑦new ∣ 𝑋new] = 𝔼𝛽 [𝔼[𝑦new ∣ 𝛽,𝑋new]]
= 𝔼𝛽 [Pr(𝑦new = 1|𝛽,𝑋new)]
= 𝔼𝛽 [logit−1(𝑋new𝛽)] .

One might be inclined to estimate the expectation with logit−1(𝑋new ̂𝛽), where
̂𝛽 is the vector of point estimates of the parameters. However, this leads to an

incorrect estimation; as logit−1 is a nonlinear function, we have

𝔼𝛽 [logit−1(𝑋new𝛽)] ≠ logit−1 (𝔼𝛽 [𝑋new𝛽]) .

Instead, we estimate the expectation by averaging logit−1(𝑋new𝛽1),… , logit−1(𝑋new𝛽𝑆)
over the posterior simulations 𝛽1,… , 𝛽𝑆 of 𝛽 which can be obtained from the
output of stan_glm. Below is an example of a point prediction for 𝑥new = 5
(which corresponds to 𝑋new = (1, 5)).

sims_1 <- as.matrix(fit_1) # a matrix of parameter simulations
x_new <- 5
a <- sims_1[, 1] # 4000 simulations of intercept
b <- sims_1[, 2] # 4000 simulations of slope

epred <- invlogit(a + b * x_new) # 4000 simulations of prediction

print(epred[1:5])

[1] 0.5501388 0.4903334 0.4732712 0.5600746 0.5665402

pred <- mean(epred)

print(pred)

[1] 0.5565013

All of this can be done in two lines by specifying type="response" in the
predict function.

new <- data.frame(income=5)
pred <- predict(fit_1, type="response", newdata=new)

print(pred)

1
0.5565013
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9.4.2 Generating linear predictions
We can obtain simulations draws for the linear part of the model
𝑋new𝛽1,… ,𝑋new𝛽𝑆 using posterior_linpred.

linpred <- posterior_linpred(fit_1, newdata=new)

print(linpred[1:5])

[1] 0.20123166 -0.03867132 -0.10701705 0.24146501 0.26774879

9.4.3 Generating outcome probabilities
Another way of calculating Pr(𝑦new = 1|𝛽,𝑋new) = logit−1(𝑋new𝛽) over the
posterior simulations 𝛽 = 𝛽1,… , 𝛽𝑆 is by calling the posterior_epred function.

epred <- posterior_epred(fit_1, newdata=new)

print(epred[1:5])

[1] 0.5501388 0.4903334 0.4732712 0.5600746 0.5665402

which gives the same outputs as the ones we used to calculate the point predic-
tion above.

We can use these simulations to estimate the uncertainty in the predictions. For
example, we can look at the mean and standard deviation of the probabilities
that people with income level 5 would support Bush.

print(c(mean(epred), sd(epred)))

[1] 0.55650132 0.02976798

The mean of 0.56 and the standard deviation of 0.03 tell us that, among the
people with income level 5, the percentage of Bush supporters is probably in
the rage 56% ± 3%.

9.4.4 Generating binary outcomes
The outputs of posterior_epred are 𝑆 different predicted probabilities 𝑝𝑖 =
Pr(𝑦new = 1|𝛽𝑖, 𝑋new); 𝑖 = 1,… , 𝑆 of an individual voter with income 𝑋new. In
other words, the distribution of the binary outcome 𝑦new for the 𝑖-th simulation
is Bernoulli(𝑝𝑖). Thus, to sample new binary outcomes 𝑦new

1 ,… , 𝑦new
𝑆 from the

posterior predictive distribution, we can sample 𝑦new
𝑖 from the Bernoulli(𝑝𝑖) for

𝑖 = 1,… , 𝑆. We can simulate binary outcomes using posterior_predict.
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postpred <- posterior_predict(fit_1, newdata=new)

print(postpred[1:10])

[1] 1 0 1 1 1 1 0 1 1 0

From theory, the average of these simulations should be close to 𝔼[𝑦new ∣ 𝑋new].
Let us check if this is the case.

print(mean(postpred))

[1] 0.55725

The average of 0.56 is close to the point prediction above.

9.4.5 Predictions with multiple inputs
We can also use these functions to make predictions for a vector or a matrix
of observations. For example, the following code computes different types of
predictions for five new people whose income levels take on values 1 through 5:

new <- data.frame(income=1:5)
pred <- predict(fit_1, type="response", newdata=new)
linpred <- posterior_linpred(fit_1, type="response", newdata=new)
epred <- posterior_epred(fit_1, type="response", newdata=new)
postpred <- posterior_predict(fit_1, type="response", newdata=new)

Here, pred is a vector of length 5, and linpred, epred and postpred are
matrices of size n_sims × 5. Let us check out the first few rows of postpred,
for example.

print(epred[1:5,])

iterations 1 2 3 4 5
[1,] 0.2459632 0.3121931 0.3871012 0.4677595 0.5501388
[2,] 0.2545576 0.3067185 0.3643436 0.4261403 0.4903334
[3,] 0.2620032 0.3092899 0.3609370 0.4160139 0.4732712
[4,] 0.2246515 0.2955238 0.3778583 0.4678963 0.5600746
[5,] 0.2202625 0.2929362 0.3779651 0.4712261 0.5665402

We notice that people with higher income levels are more likely to vote for Bush
than those with lower income levels.

We can use these simulations to approximate various posterior quantities. For
example, we can create a new variable which indicates that, for each simulation,
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Bush is more popular among the people with income level 5 than those with
income level 4.

indicator <- epred[, 5] > epred[, 4]

print(indicator[1:10])

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

which can be used to computed the posterior probability that Bush is more
popular among people with income level 5.

mean(indicator)

[1] 1

We can also compute the 95% confidence interval for the percentage difference
of people with income level 4 and people with income level 5 who support of
Bush. To do this, we use the quantile function.

quantile(epred[, 5] - epred[, 4], c(0.025, 0.975))

2.5% 97.5%
0.0534826 0.1072301

This tells us that the difference is around 5.3% − 10.8%.
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Chapter 10

Logistic regression with
multiple predictors

Including more predictors to the logistic regression adds more complexity, not
only to the model but also its interpretability. In this chapter, we introduce
a new concept for interpreting a coefficient, namely the average predictive dif-
ference. We also discuss logistic models with interactions and how to interpret
their coefficients.

10.1 Example: wells in Bangladesh
Many of the wells in Bangladesh and other South Asian countries are contami-
nated with arsenic, which is a cumulative poison that may leads to cancer and
other diseases. A research team from the United States and Bangladesh has in-
spected all the wells in Araihazar, Bangladesh and marked them as “safe” if the
amount of arsenic is 50 micrograms per liter, and “unsafe” otherwise. People
with unsafe wells were encouraged to switch to nearby private or community
wells that were safe.

A few years later, the researchers returned surveyed the households in this area.
The outcome variable is

switch = {1 if household 𝑖 switched to a new well
0 if household 𝑖 continued using its own well.

We will fit a logistic regression of this binary variable on the following inputs:
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Name Description
dist The distance to the closest known safe well

(meters)
arsenic The arsenic level of the household’s well (ug/l)
assoc whether any member of the household are active

member in community organizations
educ the education level of the head of household

First, we fit a regression of switch on two predictors: the distance and the
arsenic level. The distanced are scaled down by a factor of 100 so that the
coefficient does not become too small.

library(rstanarm)

invlogit <- plogis

wells <- read.csv("data/wells.csv")
wells$dist100 <- wells$dist/100

head(wells)

switch arsenic dist dist100 assoc educ educ4
1 1 2.36 16.826 0.16826 0 0 0.00
2 1 0.71 47.322 0.47322 0 0 0.00
3 0 2.07 20.967 0.20967 0 10 2.50
4 1 1.15 21.486 0.21486 0 12 3.00
5 1 1.10 40.874 0.40874 1 14 3.50
6 1 3.90 69.518 0.69518 1 9 2.25

fit_1 <- stan_glm(switch ~ dist100 + arsenic,
family = binomial(link="logit"),
data = wells, refresh=0)

print(fit_1)

stan_glm
family: binomial [logit]
formula: switch ~ dist100 + arsenic
observations: 3020
predictors: 3

------
Median MAD_SD

(Intercept) 0.0 0.1
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dist100 -0.9 0.1
arsenic 0.5 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Looking at the coefficients and the standard errors, both predictors are relevant
to the prediction.

10.2 Average predictive difference for coefficient
interpretation

A natural way to interpret the coefficient of arsenic is to compute the pre-
dictive difference between two values of arsenic with other predictors held at
a constant. For example, we might want to see how the predicted probability
change from arsenic = 0.5 (the lowest unsafe level) to arsenic = 1.0. Here,
we fix dist100 = 0.4.

logit−1(−0.9 ∗ 0.4 + 0.5 ∗ 1.0) − logit−1(−0.9 ∗ 0.4 + 0.5 ∗ 0.5) = 0.062.

We have to be careful on the values of the held-constant predictors; if we choose
values that are far away from the actual range of inputs, the corresponding
predictive difference might not be achievable. Below are the logistic plots of
two examples of data with two variables 𝑢 and 𝑣, where the values of 𝑣 are at
the extremes. We can see that, if we fixed 𝑣 at its mean value, the predictive
difference would be very large compared to those at the actual values of 𝑣.

Figure 10.1: Plots of logistic regression between with two predictors: 𝑢 = 0 and
𝑢 = 1, and 𝑣 is a continuous variable.

A better practice is to compute the predictive differences in one predictor, eval-
uated at the actual values of the other predictors in the data. Then, we take

117



the average of the differences. For example, let us denote the well-switching
data by {(switch1, dist1001, arsenic1), … , (switch𝑛, dist100𝑛, arsenic𝑛)}.
Then the average predictive difference (APD) between arsenic = 0.5 and
arsenic = 1.0 can be calculated as follows:

1
𝑛

𝑛
∑
𝑖=1

[logit−1(−0.9 ∗ dist100𝑖 + 0.5 ∗ 1.0) − logit−1(−0.9 ∗ dist100𝑖 + 0.5 ∗ 0.5)] .

Here is the computation in R:

arsenic_hi <- 1.0
arsenic_lo <- 0.5
b <- coef(fit_1)

# differences of logistics for all values of dist100 in the data
diffs <- invlogit(b[1] + b[2] * wells$dist100 + b[3] * arsenic_hi) -

invlogit(b[1] + b[2] * wells$dist100 + b[3] * arsenic_lo)

mean(diffs)

[1] 0.05594791

In other words, on average, households with the arsenic level of 1.0 are 5.6%
more likely to switch the well than those with the arsenic level of 0.5.

10.3 Logistic regression with interactions
Now suppose that we would like to add an interaction term between the distance
and the arsenic level to the logistic regression. In R, this can be done by adding
dist100:arsenic in the formula.

fit_2 <- stan_glm(switch ~ dist100 + arsenic + dist100:arsenic,
family = binomial(link="logit"), data = wells,
refresh=0)

print(fit_2)

stan_glm
family: binomial [logit]
formula: switch ~ dist100 + arsenic + dist100:arsenic
observations: 3020
predictors: 4

------
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Median MAD_SD
(Intercept) -0.2 0.1
dist100 -0.6 0.2
arsenic 0.6 0.1
dist100:arsenic -0.2 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

According to this model, the probability of switching Pr(switch = 1) is:

logit−1(−0.1 − 0.6 ∗ dist100+ 0.6 ∗ arsenic− 0.2 ∗ dist100 ∗ arsenic).

The coefficient of the interaction term seems to be relevant, so we keep it in the
model for the time being. We now interpret each coefficient.

• Intercept: usually, we interpret the intercept by letting the other pre-
dictors be zero. However, it is impossible for the distance and the arsenic
level to be zero; so we evaluate the prediction at the average values of
dist100 = 0.48 and arsenic = 0.66. The corresponding probability of
switching is

logit−1(−0.1 − 0.6 ∗ 0.48 + 0.6 ∗ 1.66 − 0.2 ∗ 0.48 ∗ 1.66) = 0.61.

• Effect of the distance: we can rewrite the model as

logit−1(−0.1 + 0.6 ∗ arsenic− (0.6 + 0.2 ∗ arsenic) ∗ dist100).

With arsenic fixed at a positive constant, then the coefficient of dist100
is positive, which implies that households that are farther away from the
nearest safe well are less likely to switch. Moreover, as the households’
wells have higher arsenic levels, the importance of the distance to the
probability of switching is increasing.

We plot the logistic regression of probability of switching as a function of
distance to the nearest safe well at two arsenic levels: arsenic = 0.5 and
arsenic = 3.0.

b <- coef(fit_2)

curve(invlogit(b[1] + b[2]*x + b[3]*0.5 + b[4]*x*0.5),
xlab="Distance (in 100 meters) to nearest safe well",
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ylab="Pr (switching)",
xlim=c(0,3),
ylim=c(0,0.8))

curve(invlogit(b[1] + b[2]*x + b[3]*3.0 + b[4]*x*3.0), add=TRUE)
text (0.50, 0.36, "if As = 0.5")
text (0.75, 0.50, "if As = 3.0")
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if As = 0.5

if As = 3.0

For arsenic = 1.0, the probability of switching starts off higher and
moves down faster; this is because the arsenic level became less relevant
as the safe wells was too far away from the households. At 300 meters,
the arsenic level barely affected the households’ decisions at all.

We use the APD to measure the effect of the distance on the switching
probability. Let us compute the APD of the distance from dist100 = 0
to dist100 = 1.

dist100_hi <- 1
dist100_lo <- 0
b <- coef(fit_2)

# differences of logistics for all values of dist100 in the data
diffs <- invlogit(b[1] + b[2] * dist100_hi + b[3] * wells$arsenic +

b[4] * dist100_hi * wells$arsenic) -
invlogit(b[1] + b[2] * dist100_lo + b[3] * wells$arsenic +

b[4] * dist100_lo * wells$arsenic)

mean(diffs)

[1] -0.195182
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which implies that, on average, households that are 100 meters from the
nearest safe well are 20% less likely to switch compared to households that
lived right next to a safe well.

• Effect of the arsenic level: we can rewrite the model as

logit−1(−0.1 − 0.6 ∗ dist100+ (0.6 − 0.2 ∗ dist100) ∗ arsenic).

Notice that the coefficient of arsenic decreases as dist100 increases. This
means that, as the distance increases, the importance of arsenic to the
probability of switching decreases.

Let us compute the APD between arsenic = 0.5 to arsenic = 1.0.

arsenic_hi <- 1.0
arsenic_lo <- 0.5
b <- coef(fit_2)

# differences of logistics for all values of dist100 in the data
diffs <- invlogit(b[1] + b[2] * wells$dist100 + b[3] * arsenic_hi +

b[4] * wells$dist100 * arsenic_hi) -
invlogit(b[1] + b[2] * wells$dist100 + b[3] * arsenic_lo +

b[4] * wells$dist100 * arsenic_lo)

mean(diffs)

[1] 0.05814341

which implies that, on average, households with the arsenic level of 1.0
are 5.8% more likely to switch the well than those with the arsenic level
of 0.5.

Here is the plot of the logistic regression lines of the probability of switch-
ing as a function of arsenic level, at distances of 0 meters and 50 meters.

b <- coef(fit_2)

curve(invlogit(b[1] + b[2]*0.0 + b[3]*x + b[4]*0.0*x),
xlab="Arsenic level",
ylab="Pr (switching)",
xlim=c(0,10),
ylim=c(0.35,1.0))

curve(invlogit(b[1] + b[2]*0.5 + b[3]*x + b[4]*0.5*x), add=TRUE)
text (1.6, 0.78, "if dist = 0")
text (4.7, 0.7, "if dist = 50")
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Of course, households that lived next to a safe well were more likely two
switch the well. The probabilities reach the same value as the arsenic
level became dangerously high; this is because households almost always
wanted to switch, regardless of the distance to the safe well.
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Chapter 11

Diagnostics of logistic
regression models

After fitting a logistic regression model, it is a good idea to inspect the model in
more details. We discuss techniques of plotting the fitted model and checking
the residuals. We also look into adding interaction terms to the model, as well
as identifying problems that may arise when fitting the model.

11.1 Plotting logistic regression and binary data
11.1.1 Plotting binary data using binned averages
The usual scatterplot of data with binary outcomes might not be insightful as
there is a lot of overlaps. A better way of plotting the data for is by binning a
predictor, with other predictors held at constants, and plot the binned averages,
the averages of the predictor and the outcome in each bin. We demonstrate this
with the wells data from the previous chapter.

library(rstanarm)

invlogit <- plogis

wells <- read.csv("data/wells.csv")
wells$dist100 <- wells$dist/100

We fit a logistic regression model of well-switching on the distance.
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fit_1 <- stan_glm(switch ~ dist100,
family = binomial(link="logit"),
data = wells, refresh=0)

Let us divide the distance into 8 bins.

K <- 8
# assign bin for each data point
bins <- as.numeric(cut(wells$dist100, K))

print(data.frame(wells$dist100, bins)[1:6,])

wells.dist100 bins
1 0.16826 1
2 0.47322 2
3 0.20967 1
4 0.21486 1
5 0.40874 1
6 0.69518 2

Then we compute the average of the distance and the outcome for each bin.

x_bar <- rep(NA, K) # initial vector of NAs
y_bar <- rep(NA, K) # initial vector of NAs
for (k in 1:K){
x_bar[k] <- mean(wells$dist100[bins==k]) # average of k-th bin
y_bar[k] <- mean(wells$switch[bins==k]) # average of k-th bin

}

And now we plot the binned averages (the plot of white circles below). Since
the averages of outcomes are no longer repeated values of 0 and 1, we can see
some vertical variation in the plot. We also see that the binned averages are
close to the fitted logistic regression line.

plot(wells$dist100, wells$switch, ylim=c(-0.05, 1.05),
xlab="Distance (100m)", ylab="Pr(Switching)",
pch=20, cex=1.0, main="Data and binned averages")

points(x_bar, y_bar, pch=21, cex=1.5)

# fitted logistic regression
curve(invlogit(0.6 - 0.6*x), add=TRUE)
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11.1.2 Plotting decision boundaries when there are two
predictors

Suppose that we have a logistic model with two predictors. Even though the
model is nonlinear, our decision on the outcome of a new data point can be
linear. A typical decision ̂𝑦 of a new data point (𝑥1, 𝑥2) is

̂𝑦 = {1 if Pr(𝑦 = 1|𝑥1, 𝑥2) > 0.5
0 if Pr(𝑦 = 1|𝑥1, 𝑥2) ≤ 0.5.

Since Pr(𝑦 = 1|𝑥1, 𝑥2) = logit−1( ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2) and logit−1(𝑥) = 0.5 when
𝑥 = 0, so we can rewrite the decision as follows:

̂𝑦 = {1 if ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 > 0
0 if ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 ≤ 0.

In this case, the linear function ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 = 0 splits our decision, and so
it is the decision boundary.

Let us fit a logistic regression of the well-switching on the distance and the
arsenic level.

fit_2 <- stan_glm(switch ~ dist100 + arsenic,
family = binomial(link="logit"),
data = wells, refresh=0)
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b = coef(fit_2)

Then, we plot the decision boundary of this model. In addition, we plot the lines
of two extremes: Pr(𝑦|𝑥1, 𝑥2) = 0.1 and Pr(𝑦|𝑥1, 𝑥2) = 0.9, which is equivalent
to ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 = logit(0.1) and ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 = logit(0.9), respectively.
Note that to plot these equations with abline, we need to write 𝑥2 as a function
of 𝑥1; the corresponding equations are:

𝑥2 = −
̂𝛽0
̂𝛽2
−

̂𝛽1
̂𝛽2
𝑥1

𝑥2 = − logit(0.1) − ̂𝛽0
̂𝛽2

−
̂𝛽1
̂𝛽2
𝑥1

𝑥2 = − logit(0.9) − ̂𝛽0
̂𝛽2

−
̂𝛽1
̂𝛽2
𝑥1.

plot(wells$dist100[wells$switch==1],
wells$arsenic[wells$switch==1],
main="Data and 10%, 50%, 90% discrimination lines

from fitted logistic regression",
xlab="Distance (100m)",
ylab="Arsenic",
col = rgb(red=0, green=0, blue=1, alpha=0.5),
pch=20)

points(wells$dist100[wells$switch==0],
wells$arsenic[wells$switch==0],
col = rgb(red=1, green=0, blue=0, alpha=0.5),
pch=20)

abline(-b[1] / b[3],
-b[2] / b[3])

abline((logit(0.9) - b[1]) / b[3],
-b[2] / b[3], lty=2)

abline((logit(0.1) - b[1]) / b[3],
-b[2] / b[3], lty=2)
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We notice from the plot that the model does not suit the data well, as many
points in each class leak to the other side of the decision boundary.

11.2 Predictive simulation
We can plot the uncertainty of the coefficients using stan_glm’s simulations.
First, let us take the model with a single predictor dist100 and plot the first
500 simulations of the intercept and the slope.

sims <- as.matrix(fit_1)
plot(sims[1:500,1], sims[1:500,2], xlab=expression(beta[0]),

ylab=expression(beta[1]), pch=20, cex=.5)
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We can also visualize the uncertainty in the predicted probabilities by plotting
the logistic models with the simulated coefficients from above. The plot of the
first 20 models below tells us that the probabilities of switching under shorter
distances to the nearest safe well are more varied than those under longer dis-
tances.

plot(wells$dist, wells$switch,
ylim=c(0, 1), xlim=c(0, 3.3),
xlab="Distance (in meters) to nearest safe well",
ylab="Pr (switching)")

for (j in 1:20) {
a <- sims[j, 1]
b <- sims[j, 2]
curve (invlogit(a + b * x), lwd=.5,

col="darkgray", add=TRUE)
}
a_hat <- coef(fit_1)[1]
b_hat <- coef(fit_1)[2]
curve(invlogit(a_hat + b_hat*x), lwd=1, add=TRUE)
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11.3 Log score for logistic regression
In this section, we only consider the logistic regression model with the point
estimate ̂𝛽 (i.e. the numbers shown in the output of stan_glm). We recall the
likelihood function of the logistic model.

𝑝 (𝑦| ̂𝛽,𝑋) =
𝑛
∏
𝑖=1

{logit−1(𝑋𝑖 ̂𝛽) if 𝑦𝑖 = 1
1 − logit−1(𝑋𝑖 ̂𝛽) if 𝑦𝑖 = 0.

Given𝑚 new labeled data points (𝑋new
1 , 𝑦1)… , (𝑋new

𝑚 , 𝑦𝑚), we denote the proba-
bility prediction 𝑝𝑖 = logit−1(𝑋new

𝑖 ̂𝛽) for 𝑖 = 1,… ,𝑚. The log score is computed
by taking the logarithm of the likelihood.

out-of-sample log score =
𝑚
∑
𝑖=1

{log 𝑝𝑖 if 𝑦𝑖 = 1
log(1 − 𝑝𝑖) if 𝑦𝑖 = 0.

Let us see how the log score behaves in three cases.

1. Almost perfectly correct predictions; that is, 𝑝𝑖 ≈ 1 whenever 𝑦𝑖 = 1 and
𝑝𝑖 ≈ 0 whenever 𝑦𝑖 = 0. In the former case, we have log 𝑝𝑖 ≈ log 1 = 0,
and in the latter, log(1 − 𝑝𝑖) ≈ log 1 = 0 as well. Thus we expect the log
score to be close to zero.

2. Completely wrong predictions; that is, 𝑝𝑖 ≈ 0 whenever 𝑦𝑖 = 1 and 𝑝𝑖 ≈ 1
whenever 𝑦𝑖 = 0. In the former case, we have log 𝑝𝑖 ≈ log 0 = −∞ and in
the latter, log(1 − 𝑝𝑖) ≈ log 0 = −∞. In other words, a large negative log
score indicates that the model has bad predictive performance.

3. Random guessing; that is, 𝑝𝑖 = 0.5 for all 𝑖, which implies log 𝑝𝑖 = log(1−
𝑝𝑖) = log 0.5 for all 𝑖. The corresponding log score is ∑𝑚

𝑖=1 log 0.5 =
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𝑚 log 0.5. Any model with meaningful predictions should do better than
random guessing, so its log score should be more than 𝑚 log 0.5.

We measure the out-of-sample predictive performance with expected log predic-
tive density (elpd) based on the above log score. We can compute the elpd of
the model by simply calling the loo function.

11.3.1 Example of variable selection: well-switching ex-
ample

loo_2 <- loo(fit_2)

print(loo_2)

Computed from 4000 by 3020 log-likelihood matrix

Estimate SE
elpd_loo -1968.5 15.7
p_loo 3.3 0.1
looic 3937.1 31.4
------
Monte Carlo SE of elpd_loo is 0.0.

All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.

The elpd of this model is −1968.4. In comparison, the elpd of random guessing
is 3020 log 0.5 = −2093 (as their are 3020 data points in the dataset). So in
terms of elpd, our model is better than random guessing.

Now, let us try adding an interaction term between the distance and the arsenic
level.

fit_3 <- stan_glm(switch ~ dist100 + arsenic + dist100:arsenic,
family = binomial(link="logit"), data = wells,
refresh=0)

print(fit_3)

stan_glm
family: binomial [logit]
formula: switch ~ dist100 + arsenic + dist100:arsenic
observations: 3020
predictors: 4

------
Median MAD_SD
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(Intercept) -0.1 0.1
dist100 -0.6 0.2
arsenic 0.6 0.1
dist100:arsenic -0.2 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

loo_3 <- loo(fit_3)

loo_compare(loo_2, loo_3)

elpd_diff se_diff
fit_3 0.0 0.0
fit_2 -0.4 1.9

There is virtually no improvement over the previous model, and the standard
error of the interaction term is not significantly smaller than the point estimate,
so we decide to discard it from the model.

Now, let us add two more predictors that might be relevant: the years of educa-
tion of the well user (educ4) and the status of association with any community
organization (assoc).

fit_4 <- stan_glm(switch ~ dist100 + arsenic + educ4 + assoc,
family = binomial(link="logit"), data = wells,
refresh=0)

print(fit_4)

stan_glm
family: binomial [logit]
formula: switch ~ dist100 + arsenic + educ4 + assoc
observations: 3020
predictors: 5

------
Median MAD_SD

(Intercept) -0.2 0.1
dist100 -0.9 0.1
arsenic 0.5 0.0
educ4 0.2 0.0
assoc -0.1 0.1

------
* For help interpreting the printed output see ?print.stanreg
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* For info on the priors used see ?prior_summary.stanreg

The coefficient of assoc is highly uncertain (high standard error compared to
the point estimate) so we decide to remove the predictor.

fit_5 <- stan_glm(switch ~ dist100 + arsenic + educ4,
family = binomial(link="logit"),
data = wells, refresh=0)

print(fit_5)

stan_glm
family: binomial [logit]
formula: switch ~ dist100 + arsenic + educ4
observations: 3020
predictors: 4

------
Median MAD_SD

(Intercept) -0.2 0.1
dist100 -0.9 0.1
arsenic 0.5 0.0
educ4 0.2 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Every predictors seems to be significant, so now we add the interaction terms
between the education and the other predictors.

fit_6 <- stan_glm(switch ~ dist100 + arsenic + educ4 +
dist100:educ4 + arsenic:educ4,
family = binomial(link="logit"),
data = wells, refresh=0)

print(fit_6)

stan_glm
family: binomial [logit]
formula: switch ~ dist100 + arsenic + educ4 + dist100:educ4 + arsenic:educ4
observations: 3020
predictors: 6

------
Median MAD_SD

(Intercept) 0.1 0.1
dist100 -1.3 0.2
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arsenic 0.4 0.1
educ4 -0.1 0.1
dist100:educ4 0.3 0.1
arsenic:educ4 0.1 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Now let us compare the elpd of this model to the model with two predictors.

loo_6 <- loo(fit_6)

loo_compare(loo_2, loo_6)

elpd_diff se_diff
fit_6 0.0 0.0
fit_2 -15.7 6.3

The elpd of the latest model is much higher, so we decide to keep this model
for later sections.

11.4 Residuals for logistic regression
Let 𝑦 be the actual outcome and Pr(𝑦 = 1) the predicted probability of a data
point. The residual of the prediction is given by

residual = 𝑦 − Pr(𝑦 = 1).

Unlike the linear regression, it does not make sense to plot the residual vs. the
predicted probability as the points would belong to only one of the following
functions of the predicted probability: 1 − Pr(𝑦 = 1) and −Pr(𝑦 = 1). We
illustrate this point by making a residual plot of the previous model of well-
switching.

# We can use predict(fit_6, type="response", newdata=wells)
# but it is much slower than fitted.
pred6 <- fitted(fit_6)
pred6[1:5]

1 2 3 4 5
0.6931220 0.4394061 0.7250128 0.6112158 0.6033322
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residuals = wells$switch-pred6

plot(pred6, residuals, pch=20, cex=.2,
xlab="Estimated Pr(switching)",
ylab="Average residual")
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A recommended way to visualize the residuals is by plotting the binned residuals,
which can be obtained by binning the data on the predicted probabilities, and
then computing the averages of the probabilites and the residuals for each bin.

We compute and plot the binned residuals using the binned_residuals
function from the performance library. Let 𝑝𝑗 be the average predicted
probability in bin 𝑗 and 𝑛𝑗 be the number of points in bin 𝑗. If the model
were true, then, the 𝑗-th binned residual should fall inside the interval
[−2√𝑝𝑗(1 − 𝑝𝑗)/𝑛𝑗, 2√𝑝𝑗(1 − 𝑝𝑗)/𝑛𝑗] (the dotted lines) with probability 0.95.

install.packages("performance")
install.packages("see") # required to plot residuals

library(performance)

binnedres = binned_residuals(fit_6)

plot(binnedres)

134



−0.2

−0.1

0.0

0.1

0.2

20% 40% 60% 80%
Estimated Probability of switch

A
ve

ra
ge

 r
es

id
ua

l

Within error bounds

no

yes

Points should be within error bounds

Binned Residuals

We can also plot binned residuals versus an input of interested by specifying the
name of the input as an argument to the binned_residuals function. Here,
we plot the binned residuals versus the distance and the arsenic level and see if
there are any unusual patterns in the plots.

binnedres_dist = binned_residuals(fit_6, "dist100")
binnedres_arsenic = binned_residuals(fit_6, "arsenic")

plot(binnedres_dist)
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plot(binnedres_arsenic)
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The binned residual plot of the distance is mostly flat around zero, indicating
that the model is a good fit. The plot of the arsenic level, however, has a
rising and falling pattern, in which case we might want to apply the logarithmic
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transformation.

11.5 Logarithmic transformation
As in the linear regression we can apply the logarithm on the variables to further
improve the fit of the model.

We continue the well-switching example. Detecting the unusual pattern in the
binned residuals of the arsenic level, we decide to apply the logarithm on this
predictor.

wells$log_arsenic <- log(wells$arsenic)

fit_7 <- stan_glm(switch ~ dist100 + log_arsenic + educ4 +
dist100:educ4 + log_arsenic:educ4,
family = binomial(link="logit"),
data = wells, refresh=0)

print(fit_7)

stan_glm
family: binomial [logit]
formula: switch ~ dist100 + log_arsenic + educ4 + dist100:educ4 + log_arsenic:educ4
observations: 3020
predictors: 6

------
Median MAD_SD

(Intercept) 0.5 0.1
dist100 -1.4 0.2
log_arsenic 0.8 0.1
educ4 0.0 0.1
dist100:educ4 0.3 0.1
log_arsenic:educ4 0.1 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Then we plot the binned residuals of the arsenic level again.

binnedres_logarsenic = binned_residuals(fit_7, "log_arsenic")

plot(binnedres_logarsenic)
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The residuals look better, though the problem remains at the low arsenic levels:
the households with low arsenic levels are less likely to switch than predicted
by the model.

Let us compare the elpd of the log model to the previous model.

loo_7 <- loo(fit_7)

loo_compare(loo_6, loo_7)

elpd_diff se_diff
fit_7 0.0 0.0
fit_6 -14.8 4.3

The 14.8 increase in elpd suggests that the log model is a better fit than the
previous model.

11.6 Error rate
Another way to measure the performance of a logistic regression model is by
comparing the actual outcome 𝑦 to the model’s predicted outcome:

̂𝑦 = {1 if Pr(𝑦 = 1|𝑥1, 𝑥2) > 0.5
0 if Pr(𝑦 = 1|𝑥1, 𝑥2) ≤ 0.5.
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The error rate is the proportion of mismatches between 𝑦 and ̂𝑦 in the dataset.
Thus lower error rate implies that the model’s predictions are more accurate.

To compute the error rate in R, we first output the model’s predicted probabil-
ities.

pred8 <- fitted(fit_7)

Then we can compute the error rate as follows:

error_rate <- mean((pred8>0.5 & wells$switch==0) |
(pred8<=0.5 & wells$switch==1))

error_rate

[1] 0.363245

Let us compare this error rate with the one from a much simpler model, which
predicts the majority outcome for all data points.

print(c("Proportion of 1's", mean(wells$switch)))

[1] "Proportion of 1's" "0.575165562913907"

print(c("Proportion of 0's", 1-mean(wells$switch)))

[1] "Proportion of 0's" "0.424834437086093"

The error rate of this simple model is 0.43. So in terms of error rates, our logistic
model’s predictions are more accurate than outputting the majority outcome.

11.7 Nonidentification
11.7.1 Collinearity
Collinearity happens when one of the predictors is a linear combination of the
other predictors, which results in unstable fitting procedure. This results in
coefficients having large standard errors. We can solve this issue by removing
some of the predictors while keeping the elpd at the same level.

11.7.2 Separation
Separation happens when a combination of the predictors can be used to com-
pletely split the outcomes by their values. In the example below, we have data
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of US election in 1964, where the black variable completely aligns the outcome
(rvote), as there is no black respondent that votes for the republican.

nes <- read.table("data/nes.txt")
nes64 <- nes[nes$year == 1964 &

!is.na(nes$rvote) &
!is.na(nes$female) &
!is.na(nes$black) &
!is.na(nes$income),]

head(nes64[, c("year", "rvote", "black")])

year rvote black
8467 1964 0 0
8468 1964 0 0
8470 1964 0 0
8471 1964 0 0
8473 1964 0 0
8474 1964 0 0

nes64[nes64$rvote==1 & nes64$black==1,]

[1] year resid weight1 weight2
[5] weight3 age gender race
[9] educ1 urban region income

[13] occup1 union religion educ2
[17] educ3 martial_status occup2 icpsr_cty
[21] fips_cty partyid7 partyid3 partyid3_b
[25] str_partyid father_party mother_party dlikes
[29] rlikes dem_therm rep_therm regis
[33] vote regisvote presvote presvote_2party
[37] presvote_intent ideo_feel ideo7 ideo
[41] cd state inter_pre inter_post
[45] black female age_sq rep_presvote
[49] rep_pres_intent south real_ideo presapprov
[53] perfin1 perfin2 perfin presadm
[57] age_10 age_sq_10 newfathe newmoth
[61] parent_party white year_new income_new
[65] age_new vote.1 age_discrete race_adj
[69] dvote rvote
<0 rows> (or 0-length row.names)

In this case, the best maximum likelihood estimate of the coefficient of black
is −∞. In the summary of the regression on three predictors below, we notice
that the standard error black is abnormally high.
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fit_8 <- glm(rvote ~ female + black + income,
family=binomial(link="logit"),
data=nes64)

summary(fit_8)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1509055 0.21594094 -5.3297235 9.836238e-08
female -0.0873733 0.13623456 -0.6413446 5.212988e-01
black -16.8337552 420.40038735 -0.0400422 9.680595e-01
income 0.1922987 0.05846259 3.2892611 1.004508e-03

We can handle this issue by adding some prior to the model. In fact, we can
just use the default prior in stan_glm (the weakly informative prior) and the
coefficient and the standard error becomes much smaller.

fit_9 <- stan_glm(rvote ~ female + black + income,
family=binomial(link="logit"),
data=nes64, refresh=0)

print(fit_9)

stan_glm
family: binomial [logit]
formula: rvote ~ female + black + income
observations: 1058
predictors: 4

------
Median MAD_SD

(Intercept) -1.1 0.2
female -0.1 0.1
black -8.7 4.1
income 0.2 0.1

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
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Chapter 12

Generalized linear models

The linear regression and the logistic regression are examples of a more general
class of models: the generalized linear models (GLM). As in the logistic regres-
sion, we can modify the nonlinear function and the model of the outcomes to
handle various types of data, such as data with bounded outcomes, count data
and data with multi-valued outcomes.

12.1 Definition of generalized linear models
Generalized linear models (GLMs) are a class of models that conform to the
transformed linear predictor design. Specifically, a GLM consists of:

1. A vector of outcome data 𝑦 = (𝑦1,… , 𝑦𝑛).
2. A matrix of predictor 𝑋 = (1𝑛, 𝑋1,… ,𝑋𝑝) and a vector of coefficients

𝛽 = (𝛽0,… , 𝛽𝑝)𝑇 . A linear predictor is given by 𝑋𝛽.
3. A link function 𝑔 that transforms the linear predictor to the model’s pre-

diction through its inverse: ̂𝑦 = 𝑔−1(𝑋𝛽).
4. A distribution of the outcome, given the prediction: 𝑝(𝑦| ̂𝑦).
5. Other parameters such as variances, overdispersions and the outcome’s

upper and/or lower bounds.

Here are the link functions and the outcome distribution that we have used in
the linear regression and logistic regression:

• In the linear regression, we used 𝑔(𝑥) = 𝑥 (and so 𝑔−1(𝑥) = 𝑥) and 𝑝(𝑦| ̂𝑦) =
𝑝(𝑦|𝑋𝛽) = 𝒩(𝑦 −𝑋𝛽, 𝜎2).

• In the logistic regression, we used the logit function 𝑔(𝑥) = logit(𝑥) with
the logistic inverse: 𝑔−1(𝑥) = logit−1(𝑥) = 𝑒𝑥/(1+𝑒𝑥). With the prediction
̂𝑦 = logit−1(𝑋𝛽), the outcome distribution is the Bernoulli distribution:

𝑝(𝑦| ̂𝑦) = ̂𝑦𝑦(1 − ̂𝑦)1−𝑦.
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12.2 Poisson and negative binomial regression
12.2.1 Poisson regression
We start with the simplest regression model for count data.

𝑦 ∼ Poisson(𝑒𝑋𝛽).

This is a GLM in which:

• The link function is 𝑔(𝑥) = log𝑥.
• The prediction is ̂𝑦 = 𝑔−1(𝑋𝛽) = 𝑒𝑋𝛽.

• The outcome distribution is 𝑝(𝑦| ̂𝑦) ∼ Poisson( ̂𝑦).
From the properties of the Poisson distribution, we have

• 𝔼[𝑦|𝑋] = 𝑒𝑋𝛽.

• sd(𝑦|𝑋) = √𝔼[𝑦] = 𝑒𝑋𝛽/2.

Thus, in a Poisson model, the standard deviation of the outcome is already
specified by the model. If the expected outcome is 𝔼[𝑦] = 10, then the prediction
errors are mostly in the range of ±√𝔼[𝑦] ≈ ±3.33. But for many datasets, the
prediction errors might fall out of these ranges.

12.2.2 Overdispersion and underdispersion
Overdispersion and underdispersion refer to data that show more or less varia-
tion than the Poisson model. In other words, when fitting a Poisson model, the
residuals of overdispersed data are often greater, while those of underdispersed
data are mostly smaller than the square root of the predicted value. For such
data, using Poisson models would be inappropriate. In the next section, we
introduce another model that allows more prediction errors.

12.2.3 Negative binomial regression
We introduce another model for the count data.

𝑦 ∼ negativebinomial(𝑒𝑋𝛽, 𝜙),

where negativebinomial(𝑝, 𝜙) models the number of failures in a sequence of
iid Bernoulli(𝑝) trials before observing 𝜙 successes (but the range of 𝜙 can be
extended to positive real numbers).

The predictive standard deviation is
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sd(𝑦|𝑋) = √𝔼[𝑦|𝑋] + 1
𝜙𝔼[𝑦|𝑋]2.

In the context of count data modeling, 𝜙 is the “reciprocal dispersion” parame-
ter:

• Lower values of 𝜙 correspond to more overdispersion.
• Higher values of 𝜙 correspond to less overdispersion.
• The negative binomial distribution becomes the Poisson distribution in

the limit 𝜙 → ∞ (that is, when there is no overdispersion).

12.2.4 Exposure and offset
In many cases, the outcomes depend on the amounts of exposure to the envi-
ronment, and so two different outcomes may not be directly compared. For
example, the number of daily deaths by country depends population size. The
number of car accidents at an intersection depend on the number of cars running
through that intersection.

If this is the case, we may instead let 𝑒𝑋𝛽 be the expected rate of outcomes 𝑟,
and the expected outcome is the product of exposure 𝑢 and rate 𝑟.

𝔼[𝑦] = 𝑢𝑟 = 𝑢𝑒𝑋𝛽, (12.1)

which leads to a new model with the new predictor 𝑢:

𝑦 ∼ negativebinomial(𝑢𝑒𝑋𝛽, 𝜙).

We can separate the exposure and the exponential term by applying the loga-
rithm on both sides of Equation 12.1.

log𝔼[𝑦] = log𝑢 +𝑋𝛽.

With this, we call log𝑢 the offset.

12.2.5 Example: effect of pest management on reducing
cockroach levels

We consider the Roaches dataset, which was used to study the effect of pest
management on reducing cockroach levels in urban apartments. In the exper-
iment, there were 158 apartments in the treatment group and 104 apartments
in the control group. The data consists of the following variables:

144



Name Description
y post-treatment roach count
roach1 pre-treatment roach level
treatment 0 if control, 1 if treatment
senior 1 if the apartment is restricted to elderly
exposure2 number of days the traps had been laid

We create a new predictor named roach100, which isroach1 scaled down by a
factor of 100.

roaches <- read.csv("data/roaches.csv")
roaches$roach100 <- roaches$roach1/100

head(roaches)

X y roach1 treatment senior exposure2 roach100
1 1 153 308.00 1 0 0.800000 3.0800
2 2 127 331.25 1 0 0.600000 3.3125
3 3 7 1.67 1 0 1.000000 0.0167
4 4 7 3.00 1 0 1.000000 0.0300
5 5 0 2.00 1 0 1.142857 0.0200
6 6 0 0.00 1 0 1.000000 0.0000

First, we fit Poisson regression by specifying family=poisson in stan_glm. The
number of post-treatment roaches depend on the number of days the traps had
been laid, so it makes sense to let exposure2 be the model’s exposure.

library(rstanarm)

fit_1 <- stan_glm(y ~ roach100 + treatment + senior,
family=poisson,
offset=log(exposure2),
data=roaches, refresh=0)

print(fit_1)

stan_glm
family: poisson [log]
formula: y ~ roach100 + treatment + senior
observations: 262
predictors: 4

------
Median MAD_SD

145



(Intercept) 3.1 0.0
roach100 0.7 0.0
treatment -0.5 0.0
senior -0.4 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Interpreting the coefficients. The fitted Poisson model for the number of
post-treatment roaches is

𝑦 ∼ Poisson(𝑒3.1+0.7∗roach100−0.5∗treatment−0.4∗senior).

We can interpret the coefficients of the regression as follows:

• The intercept is the prediction for roach100 = 0, treatment = 0 and
senior = 0. More precisely, for a non-senior apartment that was roach-
free before and did not receive the pest management, the expected number
of roaches is 𝑒3.1 ≈ 22. Note that sometimes some of the predictors cannot
be zero, and the intercept cannot be interpreted in that case.

• The coefficient 0.7 of roach100 indicates that, for each additional 100
roaches (while keeping treatment and senior at the same level), the
expected number of post-treatment roaches increases by a factor of 𝑒0.7 ≈
1 + 0.7 = 1.7, or a 70% increase.

• The coefficient −0.5 of treatment indicates that the number of post-
treatment roaches in an apartment with pest management is lower that
that of an apartment without pest management (with the same level of
roach100 and senior) by a factor of 𝑒−0.5 ≈ 1 − 0.5 = 0.5, or a 50%
decrease.

• The coefficient−0.4 of senior indicates that the number of post-treatment
roaches in a senior apartment is lower that that of a non-senior apartment
(with the same level of roach100 and treatment) by a factor of 𝑒−0.4 ≈
1 − 0.4 = 0.6, or a 40% decrease.

Checking the fit via simulation. Now we check the model’s fit by
looking at the posterior predictive distribution. As usual, we use the
posterior_predictive function to generate 4000 numbers of post-treatment
roaches, then we sample 400 of them.

yrep_1 <- posterior_predict(fit_1)
n_sims <- nrow(yrep_1)
subset <- sample(n_sims, 100)

After that, we use ppc_dens_overlay to compare between the distributions of
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original and simulated data. Here, we plot both data in the logarithmic scale
to make the difference between the plots more pronounced.

library(bayesplot)

ppc_dens_overlay(log10(roaches$y+1), log10(yrep_1[subset,]+1))

0.0 0.5 1.0 1.5 2.0 2.5

y
yrep

The plots show that the original data is overdispersed and contains a lot of zeros;
this indicates that the Poisson model might not be suitable as it only allows a
relatively small number of zeros.

We thus turn to the negative binomial regression, which can be done by speci-
fying family=neg_binomial_2. As before, we let exposure2 be the exposure.
There is no need to specify the reciprocal dispersion parameter 𝜙—it can be
estimated from the data.

fit_2 <- stan_glm(y ~ roach100 + treatment + senior,
family=neg_binomial_2,
offset=log(exposure2),
data=roaches, refresh=0)

print(fit_2)

stan_glm
family: neg_binomial_2 [log]
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formula: y ~ roach100 + treatment + senior
observations: 262
predictors: 4

------
Median MAD_SD

(Intercept) 2.8 0.2
roach100 1.3 0.2
treatment -0.8 0.3
senior -0.3 0.3

Auxiliary parameter(s):
Median MAD_SD

reciprocal_dispersion 0.3 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Let us see how the posterior predictive fits our data.

yrep_2 <- posterior_predict(fit_2)

n_sims <- nrow(yrep_2)
subset <- sample(n_sims, 100)
ppc_dens_overlay(log10(roaches$y+1), log10(yrep_2[subset,]+1))

0 1 2 3 4 5

y
yrep
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The negative binomial looks like a better fit with a high probability of zero.
However, the model allows the number of roaches to be as high as 105, which is
unrealistic. We will see how we can make adjustment to this model later in the
chapter.

12.3 Logistic-binomial and beta-binomial mod-
els

12.3.1 Logistic-binomial model
The logistic regression can be used to model the number of successes from 𝑛
Bernoulli trials. In this setting, we can use the following GLM design:

• The link function is 𝑔(𝑥) = logit(𝑥).
• The prediction is ̂𝑝 = 𝑔−1(𝑋𝛽) = logit−1(𝑋𝛽).
• The outcome distribution is 𝑝(𝑦| ̂𝑝) ∼ Binomial(𝑛, ̂𝑝), where 𝑛 is the num-

ber of trials.

Let us try this model on the simulated data of basketball shooting. The following
code produces 𝑁 = 100 players, each shooting 𝑛 = 20 shots. We also encode our
assumption that the field goal percentage is inversely correlated to the weight.

N <- 100
weight <- rnorm(N, 216, 31)
p <- 0.6 - 0.1*(weight - 216)/31
n <- rep(20, N)
y <- rbinom(N, n, p)
data <- data.frame(n=n, y=y, weight=weight)

head(data)

n y weight
1 20 11 229.9358
2 20 9 267.2749
3 20 9 255.7618
4 20 12 232.9686
5 20 15 197.2956
6 20 11 258.2237

To model the count data with the logistic regression, the outcome is a pair of
number of successes and number of failures.

fit_1a <- stan_glm(cbind(y, 20-y) ~ weight,
family=binomial(link="logit"),
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data=data, refresh=0)

print(fit_1a, digits=3)

stan_glm
family: binomial [logit]
formula: cbind(y, 20 - y) ~ weight
observations: 100
predictors: 2

------
Median MAD_SD

(Intercept) 3.407 0.375
weight -0.014 0.002

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Since the data is generated from the binomial model, so we expect the residuals
to be very small. Let us see if that is the case.

y <- fit_1a$y[,1]
p_hat <- fitted(fit_1a)
y_hat <- 20 * p_hat

plot(y_hat, y - y_hat,
xlab="Predicted number of field goals",
ylab="Residual", pch=20)

abline(0, 0)
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12.3.2 Overdispersion
Logistic models usually have overdispersion problem, that is, the variation in
the data is more than indicated by the model. To detect overdispersion, we first
recall the standard deviation of 𝑦 ∼ Binomial(𝑛, ̂𝑝), which is √𝑛 ̂𝑝(1 − ̂𝑝), where
̂𝑝 = logit−1(𝑋𝛽). Then, we consider the standardized residual:

𝑧𝑖 =
𝑦𝑖 − ̂𝑦𝑖
sd( ̂𝑦𝑖)

= 𝑦𝑖 − 𝑛𝑖 ̂𝑝𝑖
√𝑛𝑖 ̂𝑝𝑖(1 − ̂𝑝𝑖)

,

which has mean 0 and standard deviation 1. We then formally test for overdis-
persion by comparing ∑𝑁

𝑖=1 𝑧2𝑖 to the 𝜒2
𝑁−𝑝 distribution, where 𝑝 is the number

of predictors.

12.3.3 Beta-binomial model
To handle the overdispersion, we modify the outcome distribution of the logistic-
binomial model to obtain the beta-binomial model, which has the following GLM
design:

• The link function is 𝑔(𝑥) = logit(𝑥).
• The prediction is ̂𝑝 = 𝑔−1(𝑋𝛽) = logit−1(𝑋𝛽).
• The outcome distribution is

𝑝(𝑦| ̂𝑝) ∼ Beta-Binomial (𝑛, ̂𝑝𝜙, (1 − ̂𝑝) 𝜙) ,

where 𝑛 is the number of trials and 𝜙 ∈ (0, 1) is an overdispersion param-
eter.

The parameters of the beta-binomial distribution are chosen so that the mean
of 𝑦 is 𝑛 ̂𝑝 and the standard deviation of 𝑦 is controlled by 𝜙.

𝔼[𝑦| ̂𝑝] = 𝑛 ̂𝑝

sd(𝑦| ̂𝑝) = √𝑛 ̂𝑝(1 − ̂𝑝) (𝑛 + 𝜙
1 + 𝜙).

Therefore, lowerr 𝜙 allows for more overdispersion, higher 𝜙 for less overdisper-
sion. In the limit 𝜙 → ∞ (no overdispersion), we go back to the logistic-binomial
model.

To fit the beta-binomial model, we use the brms library, which has the brm
function that allows us to select beta_binomial family. We specify the num-
ber of trials via the trials() function. In this example, the number of trials
(i.e. number of shots) for each basketball player is 20. The input of trials can
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be a vector in the case that the number of trials varies by the data point. The
dispersion parameter 𝜙 is estimated directly from the data, so there is no need
to specify 𝜙 in brm.

# install.packages("brms")
library(brms)

fit_1b <- brm(y|trials(20) ~ weight, family=beta_binomial,
data=data, seed=0, refresh=0)

Compiling Stan program...

Start sampling

print(fit_1b, digits=3)

Family: beta_binomial
Links: mu = logit; phi = identity

Formula: y | trials(20) ~ weight
Data: data (Number of observations: 100)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 3.397 0.417 2.600 4.217 1.002 5104 3028
weight -0.014 0.002 -0.017 -0.010 1.002 5344 2960

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

phi 138.750 84.195 43.240 357.844 1.000 2519 2327

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The dispersion parameter 𝜙 = 127.2 tells us that the predictive standard devia-
tion of the beta-binomial model is √ 100+127.2

1+127.2 ≈ 1.33 times that of the logistic-
binomial model.
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12.4 Ordered and unordered categorical regres-
sion

Sometimes the outcomes can have more than two categories, which can be or-
dered or unordered.

Examples of ordered categories are:

• Easy, Medium, Hard
• Slow, Normal, Fast
• Urban, Sub-urban, Rural

Examples of unordered categories are:

• Football, Basketball, Baseball
• Car, Bus, Train
• A, B, O, AB

Here, we introduce two models: one to handle ordered categories, and another
to handle unordered categories.

12.4.1 Ordered logistic regression
For the data with ordered categories 1,… ,𝐾, we may use the following logistic
model:

• The link function is 𝑔(𝑥) = logit(𝑥), where 𝑔 can be any strictly increasing
function that maps (0, 1) to (−∞,∞).

– If 𝑔(𝑥) = logit(𝑥), then the resulting model is called the ordered logit
model or proportional odds model.

– If 𝑔(𝑥) = Φ−1(𝑥), where Φ is the cdf of the standard normal distribu-
tion, then the resulting model is called the ordered probit model.

• The prediction for the 𝑘-th category is ̂𝑝≤𝑘 = 𝑔−1(𝑐𝑘|𝑘+1+𝑋𝛽) for 1 ≤ 𝑘 ≤
𝐾−1. Here, we have additional parameters 0 < 𝑐1|2 < 𝑐2|3 < … < 𝑐𝐾−1|𝐾 ,
called the cutpoints.

• The outcome cumulative distribution is

Pr(𝑦 ≤ 𝑘) = ̂𝑝≤𝑘, 𝑘 = 1,… ,𝐾 − 1

and Pr(𝑦 ≤ 𝐾) = 1. We can calculate the probabilities of individual
categories as follows:

Pr(𝑦 = 𝑘) = Pr(𝑦 ≤ 𝑘) − Pr(𝑦 ≤ 𝑘 − 1), 𝑘 = 1,… ,𝐾.

This formulation is well-defined, as {𝑐𝑘|𝑘+1}𝐾𝑘=1 is increasing and 𝑔 (and hence
𝑔−1) is increasing imply that ̂𝑝≤𝑘 is increasing as well. The two variations of
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the model are used in different situations: the ordered logit model is used if
the probabilities of 𝑦 are expected to be evenly distributed across all categories,
while the ordered probit model is used if the probabilities are expected to be
concentrated at the middle values.

Let us try the ordered logit model on the Storable data. The data contains
records of voting games played between 2-6 college students. A summary of the
game is as follows:

• Each student was given a total of 4 votes to play in two rounds.
• The students had the choice to cast 1, 2 or 3 votes on the first round, and

the remaining votes on the second round.
• Before casting the first votes, the students were told the payoffs for the

winner, which were drawn from the uniform distribution on the interval
[1, 100].

• In addition, the students were told the distribution of the payoffs.

Here, we only take the results of the game played between two students. The
vote column contains the number of the first votes and the value column
contains the payoffs.

data_2player <- read.csv("data/2playergames.csv")
data_401 <- subset(data_2player, person == 401,

select = c("vote", "value"))
data_401$factor_vote <- factor(data_401$vote,

levels = c(1, 2, 3),
labels = c("1", "2", "3"),
ordered=TRUE)

plot(data_401$value, data_401$factor_vote,
xlab="Payoffs", ylab="Votes")
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As expected, with more payoffs in the first round, the students were willing to
cast more votes.

To fit the ordered logit model, we can use the stan_polr function (proportional
odds logistic regression) provided in rstanarm. Here. we specify the prior mean
of the 𝑅2 of the prediction to be 0.3.

fit_1 <- stan_polr(factor(vote) ~ value, method="logistic",
prior=R2(0.3, "mean"), data=data_401,
refresh=0)

print(fit_1)

stan_polr
family: ordered [logistic]
formula: factor(vote) ~ value
observations: 20

------
Median MAD_SD

value 0.1 0.0

Cutpoints:
Median MAD_SD

1|2 2.8 1.4
2|3 5.9 2.2

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The results show two cutpoints: 𝑐1|2 = 2.7 and 𝑐2|3 = 5.9. Below is the plot of
the expected vote given the payoffs from the model.
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12.4.2 Unordered logistic regression
For the data with unordered categories 1,… ,𝐾, we can use the categorical logit
model, which has the following GLM specification:

• The link function is

𝑔(𝑥1,… , 𝑥𝐾) = (log 𝑥1
𝑥𝐾

,… , log 𝑥𝐾−1
𝑥𝐾

) .

The inverse of the link function is called the multinomial logit, also known
as the softmax function.

𝑔−1(𝑥1,… , 𝑥𝐾−1) = ( 𝑒𝑥1

1 +∑𝑘 𝑒𝑥𝑘
,… , 𝑒𝑥𝐾−1

1 +∑𝑘 𝑒𝑥𝑘
, 1
1 +∑𝑘 𝑒𝑥𝑘

).

• The prediction is ( ̂𝑝1,… , ̂𝑝𝐾) = 𝑔−1(𝑋𝛽1,… ,𝑋𝛽𝐾−1) for 1 ≤ 𝑘 ≤ 𝐾 − 1.
Notice that we now have 𝐾 − 1 sets of parameters: 𝛽1,… , 𝛽𝐾−1.

• The outcome distribution is

Pr(𝑦 = 𝑘) = ̂𝑝𝑘, 𝑘 = 1,… ,𝐾.

Let us fit this model on the iris dataset, which contains data of pedal height,
pedal width, sepal height and sepal width of three different species of iris.

data(iris)

head(iris)
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

To fit the unordered logistic regression model of the species on the other predic-
tors, we again use the brm function.

fit_2 <- brm(Species ~ ., family = categorical(link = "logit"),
data=iris, prior=set_prior("normal (0, 8)"),
refresh=0)

print(fit_2)

Family: categorical
Links: muversicolor = logit; muvirginica = logit

Formula: Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
Data: iris (Number of observations: 150)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS

muversicolor_Intercept -14.25 19.96 -55.14 22.06 1.00 2033
muvirginica_Intercept -40.64 23.24 -89.32 1.26 1.00 2106
muversicolor_Sepal.Length 1.51 4.33 -6.81 10.23 1.01 1774
muversicolor_Sepal.Width -4.21 4.04 -12.52 3.35 1.00 1522
muversicolor_Petal.Length 6.89 3.28 0.80 13.76 1.00 1481
muversicolor_Petal.Width 0.07 5.32 -10.38 10.37 1.00 2092
muvirginica_Sepal.Length -0.78 4.38 -9.02 8.12 1.00 1778
muvirginica_Sepal.Width -7.03 4.34 -15.76 1.04 1.00 1690
muvirginica_Petal.Length 13.49 3.99 6.20 21.85 1.00 1576
muvirginica_Petal.Width 9.97 5.67 -0.89 21.18 1.00 2111

Tail_ESS
muversicolor_Intercept 2213
muvirginica_Intercept 2219
muversicolor_Sepal.Length 1886
muversicolor_Sepal.Width 1494
muversicolor_Petal.Length 1740
muversicolor_Petal.Width 2353
muvirginica_Sepal.Length 2027
muvirginica_Sepal.Width 1774
muvirginica_Petal.Length 1938
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muvirginica_Petal.Width 2530

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Since the data has three categories, the fitted model has two sets of coefficients
associated with two categories: versicolor and virginica.

12.5 Models with unequal error standard devi-
ations

The usual linear regression model 𝑦 ∼ 𝒩(𝑋𝛽, 𝜎2) assumes that the error stan-
dard deviation 𝜎 is fixed. That said, we can allow the standard deviation to
vary by the values of the predictors—such condition is called heteroscedasticity.
For example, it is possible to fit the model 𝑦 ∼ 𝒩(𝑋𝛽1, 𝑒𝑋𝛽2), where 𝛽1 and 𝛽2
are the model’s parameters. In the example of earnings data, we could fit the
linear regression of log-earnings with the error standard deviation in the form of
𝑒𝑐+𝑑∗male, allowing different error standard deviations for women and men. This
can be done using brm, with bf as a formula helper.

earnings <- read.csv("data/earnings.csv")

fit_1 <- brm(bf(log(earn)|subset(earn>0) ~ height + male,
sigma ~ male),

data=earnings, refresh=0)

Compiling Stan program...

Start sampling

print(fit_1)

Family: gaussian
Links: mu = identity; sigma = log

Formula: log(earn) | subset(earn > 0) ~ height + male
sigma ~ male

Data: earnings (Number of observations: 1816)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 7.94 0.49 6.97 8.92 1.00 3518 3251
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sigma_Intercept -0.12 0.02 -0.16 -0.08 1.00 5246 2823
height 0.02 0.01 0.01 0.04 1.00 3497 3142
male 0.37 0.06 0.25 0.48 1.00 3578 2986
sigma_male -0.06 0.04 -0.13 0.01 1.00 4798 2614

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

We can allow heteroskedasticity in other models as well. For example, the
negative binomial model can be extended to 𝑦 ∼ negativebinomial(𝑒𝑋𝛽1 , 𝑒𝑋𝛽2),
in which 𝜙 depends on the predictors. Let us try this on the roaches data, with
𝜙 (the shape parameter) depending on the treatment and the seniority.

fit_2 <- brm(bf(y ~ treatment + senior + offset(log(exposure2)),
shape ~ treatment + senior),

family=negbinomial,
data=roaches, refresh=0)

Compiling Stan program...

Start sampling

print(fit_2)

Family: negbinomial
Links: mu = log; shape = log

Formula: y ~ treatment + senior + offset(log(exposure2))
shape ~ treatment + senior

Data: roaches (Number of observations: 262)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 3.76 0.21 3.37 4.19 1.00 5559 2949
shape_Intercept -1.27 0.14 -1.56 -0.98 1.00 6377 3419
treatment -0.55 0.27 -1.09 -0.04 1.00 5399 2845
senior -0.73 0.34 -1.36 -0.03 1.00 4933 2621
shape_treatment -0.16 0.19 -0.53 0.21 1.00 5908 3136
shape_senior -0.56 0.22 -1.01 -0.14 1.00 5716 2983

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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12.6 Mixture models for data with many zeros
12.6.1 Hurdle models
We have briefly mentioned back in Chapter 7.1.1 how to handle data with a lot
of zero-valued outcomes, specifically for log-linear models. In summary, we can
use the logistic regression to classify whether the outcome is zero, and then we
use the linear regression to model non-zero outcomes. We demonstrate here how
to do this on the earnings data with stan_glm. First, we fit a logistic regression
model on whether the earning is zero.

# (earn > 0) is an indicator of whether the earning is zero
fit_1a <- stan_glm((earn == 0) ~ height + male,

family=binomial(link="logit"),
data=earnings, refresh=0)

print(fit_1a)

stan_glm
family: binomial [logit]
formula: (earn == 0) ~ height + male
observations: 1816
predictors: 3

------
Median MAD_SD

(Intercept) 3.0 1.9
height -0.1 0.0
male -1.7 0.3

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Then, we fit a linear regression model on the data with non-zero earnings.

fit_1b <- stan_glm(log(earn) ~ height + male,
data=earnings, subset=earn>0,
refresh=0)

print(fit_1b)

stan_glm
family: gaussian [identity]
formula: log(earn) ~ height + male
observations: 1629
predictors: 3
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subset: earn > 0
------

Median MAD_SD
(Intercept) 8.0 0.5
height 0.0 0.0
male 0.4 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 0.9 0.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The resulting model is a mixture of the linear and logistic models. Suppose
that we want to simulate the earnings of a randomly chosen 68-inch tall woman
from this model; this can be done in two steps: first, we use the logistic model
to predict whether her earning is zero, and if it is not zero, we use the lin-
ear model to predict her earning. Both predictions can be obtained using
posterior_predict.

new <- data.frame(height=68, male=0)
pred_1a <- posterior_predict(fit_1a, newdata=new)
pred_1b <- posterior_predict(fit_1b, newdata=new)
pred <- ifelse(pred_1a==1, 0, exp(pred_1b))

print(pred[1:10])

[1] 14555.332 23870.347 9702.973 2905.343 5832.872 19438.731 3011.978
[8] 5149.068 69719.996 18398.429

To fit the mixture model in a single step, we may use brm with the
hurdle_lognormal family.

fit_2 <- brm(bf(earn ~ height + male, hu ~ height + male),
family=hurdle_lognormal,
data=earnings, refresh=0)

Compiling Stan program...

Start sampling

print(fit_2)

Family: hurdle_lognormal
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Links: mu = identity; sigma = identity; hu = logit
Formula: earn ~ height + male

hu ~ height + male
Data: earnings (Number of observations: 1816)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 7.96 0.51 6.97 8.95 1.00 3423 3276
hu_Intercept 2.85 1.94 -0.94 6.68 1.00 3589 2963
height 0.02 0.01 0.01 0.04 1.00 3371 3171
male 0.37 0.06 0.25 0.50 1.00 3258 2985
hu_height -0.07 0.03 -0.13 -0.01 1.00 3560 2968
hu_male -1.66 0.32 -2.34 -1.08 1.00 3019 1972

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.87 0.01 0.84 0.90 1.00 4635 2992

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Notice that the coefficients of the linear regression (Intercept, height and
male) and the logistic regression (hu_Intercept, hu_height and hu_male) are
almost identical to the ones from the direct fits above. For count data with
many zeros, one can use the hurdle_poisson or hurdle_negbinomial family
in brm.

12.6.2 Zero-inflated models
As in hurdle models, a zero-inflated model also consists a logistic regression
model that predicts whether the outcome is zero, followed by a regression model
of our choice. The difference is that, in a hurdle model, outputs of the second
model must be non-zero (e.g. log-linear models), while in a zero-inflated model,
they can be zero (e.g. Poisson or negative binomial models).

In Section 12.2.5, we have fitted a negative binomial model to the roaches data.
Let us try fitting a zero-inflated negative binomial model on this data using brm.
Here, we use all predictors, including the exposure variable, to predict whether
the number of post-treatment roaches is zero.

fit_3 <- brm(bf(y ~ roach100 + treatment + senior +
offset(log(exposure2)),

zi ~ roach100 + treatment + senior +
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offset(log(exposure2))),
family=zero_inflated_negbinomial(),

data=roaches, refresh=0)

Compiling Stan program...

Start sampling

print(fit_3)

Family: zero_inflated_negbinomial
Links: mu = log; shape = identity; zi = logit

Formula: y ~ roach100 + treatment + senior + offset(log(exposure2))
zi ~ roach100 + treatment + senior + offset(log(exposure2))

Data: roaches (Number of observations: 262)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 3.17 0.20 2.78 3.58 1.00 3549 2463
zi_Intercept -1.03 0.52 -2.16 -0.13 1.00 2615 2772
roach100 0.87 0.17 0.55 1.22 1.00 3204 2663
treatment -0.55 0.22 -0.99 -0.13 1.00 3567 2934
senior -0.10 0.25 -0.59 0.43 1.00 3279 2833
zi_roach100 -12.72 4.27 -23.09 -6.34 1.00 1649 1242
zi_treatment 1.20 0.50 0.28 2.26 1.00 3213 2459
zi_senior 1.01 0.50 0.07 2.00 1.00 3143 2830

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

shape 0.49 0.06 0.38 0.61 1.00 2959 2929

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

We again check the model’s fit with fake data simulation.

yrep_3 <- posterior_predict(fit_3)

n_sims <- nrow(yrep_3)
subset <- sample(n_sims, 100)
ppc_dens_overlay(log10(roaches$y+1), log10(yrep_3[subset,]+1))
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The fit of the model is slightly better than that of the negative binomial model.
Specifically, there are fewer apartments whose expected post-treatment numbers
of roaches are larger than 10,000.
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Chapter 13

Poststratification:
regression with
non-representative sample

Sometimes the sample that we use to fit the regression model does not repre-
sent the population well. For example, a randomized experiment can have equal
numbers of males and females, but the same might not hold for the people in the
city. In this case, the regression on the sample cannot be used to infer the pop-
ulation, but we can regress on each separate group and average the predictions
according to the population; this technique is called post-stratification.

Suppose that we would like to predict 𝑦 on a predictors 𝑥1 with a model ̂𝑦 =
𝑔−1(𝛽0 + 𝛽1𝑋1) for some link function 𝑔. If the sample is not representative of
the population, we cannot infer 𝑦 on any level of 𝑋1. But if we have access to
the data of the population, such as the census, we can use it to recalibrate the
prediction of 𝑦 as follows: Suppose that there are records of additional variables
𝑋−1 = (𝑋2,… ,𝑋𝑝) in both the sample and the population. We can instead fit
a regression model of 𝑦 on the other variables:

̂𝑦 = 𝑔−1( ̂𝛽0 + ̂𝛽1𝑋1 +…+ ̂𝛽𝑝𝑋𝑝).

Then, to infer 𝑦 at level 𝑋1 = 𝑥1, we predict ̂𝑦 at each stratum, that is, each
observed values 𝑥−1 = (𝑥2,… , 𝑥𝑝) of 𝑋−1.

̂𝑦𝑥−1|𝑥1
= 𝑔−1( ̂𝛽0 + ̂𝛽1𝑥1 +…+ ̂𝛽𝑝𝑥𝑝).

The final prediction ̂𝑦𝑥1
is then obtained by combining these per-stratum pre-

dictions, weighted by the stratum proportions 𝑝𝑥−1|𝑥1
in the 𝑋1 = 𝑥1 subpopu-
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lation.

̂𝑦𝑥1
= ∑

𝑥−1

𝑝𝑥−1|𝑥1
̂𝑦𝑥−1|𝑥1

.

We demonstrate using Monica Alexander’s example of post-marriage name
change (Alexander 2019). The data, collected by Philip Cohen, consists of
responses from 5,000 people regarding their decisions for a name change after
marriage. However, the respondents tend to have higher education levels and
are younger than average. If we want to, for example, find out the proportion
of women who kept their names after marriage, we could not infer it directly
from the data.

Instead, we fit a logistic regression model on the responses, calculate the propor-
tion, and recalibrate it using population’s data, namely the U.S. census recorded
at IPUMS USA.

Before anythin, we install ipumsr to read the census data and haven to read a
*.dta file.

library(ipumsr)
library(haven)
library(rstanarm)

First, we import the survey data and only focus on ever-married women. We
remove rows with missing data, divide ages into age groups, marriage years into
decades, and education levels into pre-bachelor, bachelor and post-bachelor.

mncs <- read_dta("data/MNCS-PV2.dta")
mncs <- mncs[,c("yrmar",

"agemar",
"agemarc",
"genmar",
"spgenmar",
"namechg",
"ednow",
"state")]

mncs <- mncs[!is.na(mncs$agemar) &
!is.na(mncs$yrmar) &
mncs$genmar == 2 &
mncs$spgenmar == 1,]

mncs$kept_name <- as.numeric(mncs$namechg == 1)
mncs$state_name <- tolower(

as.character(
factor(
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mncs$state,
levels = attributes(mncs$state)$labels,
labels = names(attributes(mncs$state)$labels)

)
)

)
mncs$age <- mncs$agemar + (2019 - mncs$yrmar)
mncs$age_group <- (as.character(

cut(mncs$age,
breaks = c(seq(20, 80, by = 5), Inf),
labels = seq(20, 80, by = 5),
right = FALSE)

)
)
mncs$decade_married <- (as.character(

cut(mncs$yrmar,
breaks=c(seq(1969, 2019, by = 10), Inf),
labels=seq(1969, 2019, by = 10),
right=FALSE
)

)
)
mncs$educ_group <- cut(mncs$ednow,

breaks = c(-1, 4.5, 5, 9),
labels = c("<BA", "BA", ">BA"))

mncs <- mncs[c("kept_name", "state_name", "age_group",
"decade_married", "educ_group")]

head(mncs)

# A tibble: 6 x 5
kept_name state_name age_group decade_married educ_group

<dbl> <chr> <chr> <chr> <fct>
1 0 ohio 50 1979 >BA
2 0 virginia 35 1999 >BA
3 1 new york 35 2009 >BA
4 0 rhode island 55 1999 >BA
5 0 illinois 35 2009 >BA
6 0 north carolina 25 2009 >BA

We do not share the U.S. census data here, but you can sign up at the IPUMS
US website and request for the data yourself. You may request for a single-year
or 5-year data that includes the following variables: AGE, PERWT, SEX, STATEFIP,
MARST, YRMARR, EDUC. In addition to the *.dat data, do not forget to download
the accompanied *.xml file.
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ddi <- read_ipums_ddi("data/usa_00001.xml")
ipums <- read_ipums_micro(ddi)

Use of data from IPUMS USA is subject to conditions including that users should
cite the data appropriately. Use command `ipums_conditions()` for more details.

ipums <- ipums[ipums$SEX == 2 & # only woman
ipums$AGE > 14 &
ipums$MARST != 6 & # exclude singles
ipums$YRMARR > 1968,]

ipums$state_name <- tolower(
as.character(

factor(
ipums$STATEFIP,
levels = attributes(ipums$STATEFIP)$labels,
labels = names(attributes(ipums$STATEFIP)$labels)

)
)

)
ipums$age_group <- as.character(

cut(ipums$AGE,
breaks = c(seq(20, 80, by = 5), Inf),
labels = seq(20, 80, by = 5),
right = FALSE
)

)
ipums$decade_married <- as.character(

cut(ipums$YRMARR,
breaks = c(seq(1969, 2019, by = 10), Inf),
labels = seq(1969, 2019, by = 10),
right = FALSE
)

)
ipums$educ_group <- cut(ipums$EDUC,

breaks = c(-1, 9.5, 10, 12),
labels = c("<BA", "BA", ">BA"))

ipums <- ipums[c("state_name", "PERWT", "age_group",
"decade_married", "educ_group")]

head(ipums)

# A tibble: 6 x 5
state_name PERWT age_group decade_married educ_group
<chr> <dbl> <chr> <chr> <fct>
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1 alabama 19 75 1989 <BA
2 alabama 30 50 1989 <BA
3 alabama 24 65 1969 <BA
4 alabama 3 60 1969 <BA
5 alabama 3 35 1999 BA
6 alabama 57 25 2009 <BA

Then, we aggregate the number of people (PERWT) by the other variables.

ipums <- aggregate(PERWT ~ age_group + state_name
+ educ_group + decade_married,
ipums, sum)

head(ipums)

age_group state_name educ_group decade_married PERWT
1 50 alabama <BA 1969 160
2 55 alabama <BA 1969 11971
3 60 alabama <BA 1969 42487
4 65 alabama <BA 1969 40086
5 70 alabama <BA 1969 18581
6 75 alabama <BA 1969 7568

Suppose that we would like to calculate the proportion of women who changed
their names for each age groups. Then, in each age groups, we need to calibrate
our model’s predictions according to the proportion of the other variables.

ipums <- transform(ipums, prop = ave(PERWT,
age_group,
FUN = prop.table))

ipums$PERWT <- NULL

head(ipums)

age_group state_name educ_group decade_married prop
1 50 alabama <BA 1969 1.714893e-05
2 55 alabama <BA 1969 1.202384e-03
3 60 alabama <BA 1969 4.400218e-03
4 65 alabama <BA 1969 5.183921e-03
5 70 alabama <BA 1969 4.467144e-03
6 75 alabama <BA 1969 4.001971e-03

Now we train the model on the survey data. Here, we decide not to regress on
the education group
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fit <- stan_glm(kept_name ~ age_group
+ state_name
+ decade_married
+ educ_group,
family = binomial(link = "logit"),
data = mncs, refresh = 0)

We then make point predictions on the census data.

ipums$pred <- predict(fit, type = "response",
newdata = ipums)

print(ipums$pred[1:10])

[1] 0.02413101 0.02965398 0.05119582 0.08420307 0.09098488 0.03837479
[7] 0.03763646 0.08644370 0.10380387 0.16493608

Let us use these predictions to estimate the proportion of 25-to-30-year-old
women who keep their names after marriage. The estimate is given by the sum
of predictions for all strata in the 25-30 age group, weighted by the proportions
of the corresponding stratum that we just calculated from the census.

age_group_25 <- (ipums$age_group == 25)
ipums25 <- ipums[age_group_25, ]

prop_age25 <- ipums25$prop
pred_age25 <- ipums25$pred
poststrat_est <- sum(prop_age25 * pred_age25)

cat("Predicted proportion for age group 25 =", poststrat_est, "\n")

Predicted proportion for age group 25 = 0.1870944

To predict the proportions at all age levels, we can use aggregate to sum the
weighted predictions over the age groups. Here, we use transform to create a
new column named total, which consists of the prediction-proportion products.

poststrat_pred <- aggregate(
total ~ age_group,
transform(ipums,

total = prop * pred),
sum)

print(poststrat_pred[1:10, ])
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age_group total
1 20 0.2673061
2 25 0.1870944
3 30 0.2125474
4 35 0.2540660
5 40 0.2762589
6 45 0.3078861
7 50 0.3289182
8 55 0.3116307
9 60 0.3367970
10 65 0.3735635

Instead of point predictions, we can post-stratify on the posterior predictive
distributions at each age group. Here, each row of the dataframe poststrat
consists of 4,000 posterior weighted predictions at each age group.

pred_sim <- t(posterior_epred(fit, newdata = ipums))
poststrat <- data.frame(

age_group = strtoi(ipums$age_group),
ipums$prop * pred_sim)

poststrat <- aggregate(. ~ age_group,
poststrat,
sum)

print(poststrat[, 1:6])

age_group X1 X2 X3 X4 X5
1 20 0.2047181 0.1992183 0.20903781 0.2086398 0.1852048
2 25 0.1757313 0.1777441 0.16962754 0.1555006 0.1953599
3 30 0.2062349 0.1976563 0.21615264 0.1979541 0.2152249
4 35 0.2151183 0.2420801 0.24137215 0.2223249 0.2508102
5 40 0.2495369 0.2679932 0.26539967 0.2521099 0.2672938
6 45 0.2991570 0.2816275 0.30214115 0.2560419 0.3045929
7 50 0.2841912 0.3113215 0.28739235 0.3083620 0.2990760
8 55 0.2913605 0.3210117 0.33632878 0.3055867 0.3186225
9 60 0.3122404 0.3507243 0.33530441 0.3475443 0.3378746
10 65 0.4055613 0.3253300 0.35137288 0.3250265 0.3639057
11 70 0.4154457 0.3584115 0.41041909 0.3292691 0.3303671
12 75 0.2459736 0.2422803 0.30387694 0.1464125 0.3225784
13 80 0.1458281 0.4780080 0.05933012 0.3092706 0.1037218

Now we can plot the prediction, with uncertainty, of the proportion of women
in a particular age group who keep their names. The predictions across all age
groups are compared with the simple predictions using the sample proportions.
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ncols <- ncol(poststrat)
means <- rowMeans(poststrat[, 2:ncols])
sds <- apply(poststrat[, 2:ncols], 1, sd)

simple_props <- aggregate(kept_name ~ age_group,
mncs,
mean)

# Plot stratified predictions
plot(poststrat$age_group,

means,
xlab = "Age group",
ylab = "Proportion of women who keep their names",
ylim = c(0, 0.7),
pch = 16, cex = 2)

# Add error bars
arrows(x0 = poststrat$age_group,

y0 = means - 2 * sds,
x1 = poststrat$age_group,
y1 = means + 2 * sds,
code = 3,
angle = 90,
length = 0.1)

# Plot sample proportions
points(poststrat$age_group,

simple_props$kept_name,
col = "red", pch = 16,
cex = 2)
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We can see that the post-stratified predictions are lower than the sample pro-
portions across all age groups. A possible explanation is that the respondents
were mostly young and highly educated people, who are more likely to change
their names after marriage.
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Part III

Causal inference
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We have been predicting the outcome using regression fitted on the data. In the
following chapters, we are concerned with causal questions: what would happen
to an outcome 𝑦 if the unit is given a treatment, intervention, or exposure 𝑧? We
will address challenges and discuss regression as a tool to answer such questions.
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Chapter 14

Basics of causal inference

14.1 A running example
Consider the following hypothetical scenario: over the past few decades, omega-
3 fatty acids has been promoted and advertised as an effective supplement for
reducing blood pressure. Being skeptical about this clain, you decide to investi-
gate. You found eight friends who agreed to join your experiment.

• Four of the friends were in the treatment group. They agreed to take the
fish oil supplement every day for one year.

• The other four friends were in the control group. They agreed to simply
maintaining their diets, free from fish oil supplement.

After one year, you measure systolic blood pressure of each of the eight par-
ticipants. For simplicity, we consider systolic blood pressure of 160mmHg and
higher as “high blood pressure”.

14.1.1 Potential outcomes, counterfactuals, and causal ef-
fects

To formalize causal problems in this study, we assign several notations to each
participant 𝑖 ∈ {1,… , 8}

• Let 𝑧𝑖 be the treatment variable of 𝑖.
– 𝑧𝑖 = 0 if 𝑖 is in the control group (i.e. he/she did not take any oil

supplement).
– 𝑧𝑖 = 1 if 𝑖 is in the treatment group (i.e. he/she had been taking fish

oil supplement).
• Let 𝑦0𝑖 and 𝑦1𝑖 be two outcome variables.

– 𝑦0𝑖 denotes the blood pressure of 𝑖 if he/she did not take any supple-
ment.
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– 𝑦1𝑖 denotes the blood pressure of 𝑖 if he/she had been taking the
supplement.

The outcome variables 𝑦0𝑖 and 𝑦1𝑖 are commonly referred to as potential out-
comes. It is important to note that the potential outcomes are assigned to
all participants, regardless of whether or not they had received the treatment
(i.e. the supplement).

Thus, for everyone in the control group (𝑧𝑖 = 0), the value of 𝑦0𝑖 is observed,
while that of 𝑦1𝑖 is unobserved. And for everyone in the treatment group (𝑧𝑖 = 1),
the value of 𝑦1𝑖 is observed while that of 𝑦0𝑖 is unobserved. Sometimes, we might
be interested in what would happen if a particular participant from the control
group had recieved the treatment and vice versa. In this case, the outcomes
of interest would be 𝑦1𝑖 and 𝑦0𝑖 , respectively. Such outcomes are referred to as
counterfactual outcomes. For each participant, it is impossible to directly
measure his/her counterfactual outcome—this is commonly referred to as the
fundamental problem of causal inference.

Let 𝑦𝑖 be the observed outcome (not potential outcome) of person 𝑖. We can
express it in terms of the potential outcomes:

𝑦𝑖 = 𝑦0𝑖 (1 − 𝑧𝑖) + 𝑦1𝑖 𝑧𝑖.

The causal effect of supplement versus non-supplement for person 𝑖 is the
difference between the two potential outcomes:

𝜏𝑖 = 𝑦1𝑖 − 𝑦0𝑖 .

A hypothetical data of the experiment is shown in the table below. We see that
at least one of the potential outcomes is always missing.

Unit 𝑖
Treatment

𝑧𝑖

Potential
outcome #1

𝑦0𝑖

Potential
outcome
#2 𝑦1𝑖

Observed
outcome

𝑦𝑖
Causal

inference 𝜏𝑖
Alex 0 140 ? 140 ?
Anna 0 140 ? 140 ?
Bill 0 150 ? 150 ?
Bob 0 150 ? 150 ?
Cindy 1 ? 155 155 ?
Carol 1 ? 155 155 ?
Dan 1 ? 160 160 ?
Dave 1 ? 160 160 ?
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14.2 Average causal effects
We introduce several notions of causal effect.

First is the causal effect on an individual; this is sometimes called individual
treatment effect (ITE).

individual treatment effect: 𝜏𝑖 = 𝑦1𝑖 − 𝑦0𝑖 .

The sample average treatment effect (SATE) is the average of ITE across all
units in the sample.

𝜏SATE = 1
𝑛

𝑛
∑
𝑖=1

(𝑦1𝑖 − 𝑦0𝑖 ).

The conditional average treatment effect (CATE) is the average treatment effect
of a subset 𝒞 of the units, such “men” or “people who received the treatments”.

𝜏CATE = 1
|𝒞| ∑𝑐∈𝒞

(𝑦1𝑐 − 𝑦0𝑐 ),

where |𝒞| is the number of units in the subset 𝒞.
The population average treatment effect (PATE) is the average treatment effect
across the population.

𝜏PATE = 1
𝑁

𝑁
∑
𝑖=1

(𝑦1𝑖 − 𝑦0𝑖 ).

If the sample is a randon sample, then we can use SATE to estimate PATE.
And any unbiased estimator of SATE is also an unbiased estimator of PATE.

Estimation of the average treatment effects is straightforward when the experi-
ment is performed at completely random.

14.3 Randomized experiments
14.3.1 Completely randomized experiments
In a completely randomized experiments, everyone in the sample is equally likely
to be assigned to the treatment group and the control group. With this, the
averages of 𝑦1𝑖 ’s and 𝑦0𝑖 are representative of those of the sample mean, and so
we can estimate SATE with
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𝜏 = 1
𝑛/2 ∑

𝑖,𝑧𝑖=0
𝑦0𝑖 − 1

𝑛/2 ∑
𝑖,𝑧𝑖=1

𝑦1𝑖 ,

which is the same as the coefficient 𝜏 of the regression 𝑦𝑖 = 𝑎 + 𝜏𝑧𝑖. In other
words, in a completely randomized experiment, we can estimate SATE using
a regression of the outcome on the treatment assignment. If the sample is
representative of the population, we can also use 𝜏 to estimate PATE.

To illustrate how the randomness affects the estimate of SATE, we compare
between two sets of data, which also include the ages of the units. The first one
is an ideal scenario for a randomized experiment. In each row, the bold potential
outcome is the one actually seen, and the non-bold one is not observed.

Table 14.2: Data of the fish oil supplement experiment. Bold numbers are
observed potential outcomes and non-bold number are unobserved.

Unit 𝑖 Age 𝑥𝑖

Treatment
𝑧𝑖

Potential
outcome #1

𝑦0𝑖

Potential
outcome #2

𝑦1𝑖

Observed
outcome

𝑦𝑖
Alex 40 0 140 135 140
Anna 40 1 140 135 135
Bill 50 0 150 140 150
Bob 50 1 150 140 140
Cindy 60 0 160 155 160
Carol 60 1 160 155 155
Dan 70 0 170 160 170
Dave 70 1 170 160 160

In this case, the simple difference in means, 147.5− 155.5, is the same as SATE
of −7.5.
Now let us compare this with a less ideal randomized scenario:

Table 14.3: Another data of the fish oil supplement experiment in which younger
participants were more likely to receive the treatment.

Unit 𝑖 Age 𝑥𝑖

Treatment
𝑧𝑖

Potential
outcome #1

𝑦0𝑖

Potential
outcome #2

𝑦1𝑖

Observed
outcome

𝑦𝑖
Alex 40 1 140 135 135
Anna 40 1 140 135 135
Bill 50 1 150 140 140
Bob 50 0 150 140 150
Cindy 60 0 160 155 160
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Unit 𝑖 Age 𝑥𝑖

Treatment
𝑧𝑖

Potential
outcome #1

𝑦0𝑖

Potential
outcome #2

𝑦1𝑖

Observed
outcome

𝑦𝑖
Carol 60 0 160 155 160
Dan 70 0 170 160 170
Dave 70 1 170 160 160

We can see that the the treatment is assigned to mostly younger participants,
and the difference in the means, 142.5 − 160 = −17.5, significantly underesti-
mates the SATE of −7.5.
In many scenarios, the sample is not perfectly randomized, so we have to make
some adjustment for the imbalance, a technique that we will introduce later.

14.3.2 Randomized blocks experiments
In some experiments, the participants can be divided by the observed values of
a subset of variables into various blocks. If there are equal numbers of control
and treated units within each block like in Table 14.2, we can simply estimate
SATE using the difference of the means.

However, in some experiments, the ratios of control and treated units might
be different across the blocks. In the fish oil supplement example, older people
might be more in need of the supplement than the younger people, so the re-
seachers might simulate this pattern by assigning the treatment to more people
in the older block than the younger block, as shown in the table below.

Unit 𝑖 Age 𝑥𝑖

Treatment
𝑧𝑖

Potential
outcome #1

𝑦0𝑖

Potential
outcome #2

𝑦1𝑖

Observed
outcome

𝑦𝑖
Alex 40 0 140 135 140
Anne 40 0 140 135 140
Anna 40 1 140 135 135
Bill 50 0 150 140 150
Brad 50 0 150 140 150
Bob 50 1 150 140 140
Cindy 60 0 160 155 160
Carol 60 1 160 155 155
Chris 60 1 160 155 155
Dan 70 0 170 160 170
Dave 70 1 170 160 160
Drew 70 1 170 160 160

The difference between the means is −0.83 overestimates the SATE of −7.5.
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A better estimate of SATE can be obtained by first computing the difference
between the means in each block, and then taking a weighted average of the
differences, with weights proportional to the number of units in each.

Another way to obtain the estimate is by fitting a linear regression on the
treatment variable and indicators for the three of the four blocks:

𝑦𝑖 = 𝑎 + 𝜏RB𝑧𝑖 + 𝛽1𝑏1𝑖 + 𝛽2𝑏2𝑖 + 𝛽3𝑏3𝑖.

Of course, this is an accurate estimator of SATE if there is only few variation
of the outcomes within each block, or in other words, if the blocking variable
is highly predictive of the outcome. Thus, in a randomized blocks experiment,
we should select blocking variables that are predictive of the outcome, based on
either theory or results from previous studies.

Randomized blocks experiments have one advantage over completely random-
ized experiments: their estimates of SATE (or PATE) have smaller standard
deviations due to the homogeneity of the blocking variables.

14.3.3 Matched pairs experiments
A matched pairs experiment is a special case of a randomized block design
with only two units in each block. For example, Table 14.2 shows data of a
matched pairs experiment. In each block, we randomly select one unit (with 0.5
probability) to receive the treatment, and the other unit to receive the control.

This design is very effective when the members of each matched pair are similar
to each other, because the difference of the observed outcomes in each pair is a
good estimate for the treatment effect. Suppose that there are 𝐾 pairs. Let 𝑦𝑇𝑗
be the outcome of the treated unit 𝑦𝐶𝑗 be the outcome of the controlled unit in
pair 𝑗. Then, we can estimate SATE using the average of those 𝐾 differences:

̄𝑑 = 1
𝐾

𝐾
∑
𝑘=1

(𝑦𝑇𝑗 − 𝑦𝐶𝑗 ).

𝑑𝑗 = 𝑦𝑇𝑗 − 𝑦𝐶𝑗 , , and Such pairs arise naturally in children of the same family,
students in the same class or workers in the same department.

14.3.4 Group or cluster-randomized experiments
Sometimes, due to logistical or cost reasons, the treatment is assigned at the
group level. For example, a schoolwide schedule reform requires assigning the
new schedule to all students in a school; a new working hours policy requires
changing the working hours to all employees in a company. A simple approach
perform causal analysis at a group level is to treat each group as a single unit
and use the aggregated value of the response variables as the outcome.
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14.4 Assumptions of randomized experiments
In this section, we discuss several assumptions in the random designs for effective
causal analysis.

14.4.1 Ignorability
The first assumption is ignorability, which differs by the random designs. We
will state a version of this assumption for each design mentioned in the previous
section.

Completely randomized design

that the distribution of each potential outcome is independent of the treatment
assignment. This can be written formally as

𝑧 ⟂ 𝑦0, 𝑦1. (14.1)

In our running example, this says that a participant with low blood pressure
after one year is equally likely to be from control or treatment group.

The ignorability assumption implies that the difference in means is unbiased.
To see this, we compute the expectations.

𝔼[𝑦|𝑧 = 1] = 𝔼[𝑦1|𝑧 = 1] = 𝔼[𝑦1]
𝔼[𝑦|𝑧 = 0] = 𝔼[𝑦0|𝑧 = 0] = 𝔼[𝑦0].

In each line, the first equivalence follows from the fact that the potential out-
come is observed for the corresponding treatment assignment, and the second
equivalence follows from the ignorability. Consequently,

𝔼[𝑦|𝑧 = 1] − 𝔼[𝑦|𝑧 = 0] = 𝔼[𝑦1] − 𝔼[𝑦0] = 𝜏SATE.

If the data is also a random sample from the population, we can replace the right-
hand side by 𝜏PATE. This agrees with the data in Table 14.2 and Table 14.3 that
the difference in means is biased when the ignorability assumption is violated.

Randomized blocks experiments

Let 𝑏 be the blocking variable. The ignorability assumption for the random
block designs is:

𝑧 ⟂ 𝑦0, 𝑦1 ∣ 𝑏.

In other words, within each block, all units have the same probability of being
assigned in the treatment group. Note that if the probability of treatment is
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the same across all blocks (that is, 𝑧 ⟂ 𝑏), then Equation 14.1 is satisfied, and
the difference in means in an unbiased estimator of SATE (or PATE).

Matched pairs experiments

This a special case of randomized block experiments with two units in each
block. By the definition of a matched pairs experiment, every unit has the same
probability (0.5) of being assigned the treatment; so Equation 14.1 is satisfied,
and the difference in means in an unbiased estimator of SATE (or PATE).

14.4.2 Stable unit treatment value assumption (SUTVA)
The stable unit treatment value assumption (SUTVA) is simply

𝑦𝑧𝑖
𝑖 = 𝑦𝑧′

𝑖
𝑖 if 𝑧𝑖 = 𝑧′𝑖.

In other words, the potential outcome of unit 𝑖 only depends only on the treat-
ment, and nothing else. This assumption has several implications. First, it im-
plies that the outcome of a unit does not depend on the other units’ treatment
assignments. Without this condition, causal estimation would quickly become
intractable. In our running example, if a unit’s outcome is also dependent on
the other units’ treatments, then there would be 28 = 256 different combination
of treatment assignments to 8 people. An we clearly do not have enough data
to consider these 256 possibilities.

Here are some examples of SUTVA violations.

• In a study of effect of a new fertilizer, each of adjacent plots is randomly
assigned to receive or not receive the fertilizer. However, the fertilizer
from a treated plot might leak into a controlled plot, violating the SUTVA
assumption.

• Vaccines of a contagious disease, randomly administered to people in a
community could result in unvaccinated people having lower chance to
contract the disease.

• A study that offered families from the same housing complex to move to
a better neighborhood. However, a family accepting the offer and moving
out might affect (positively or negatively) another family that did not
receive the offer.

If we would like to perform an experiment in which SUTVA most likely does not
hold due to unit “interference” as the examples show, one solution is to assign
the treatment at a group level. For example, consider a study whose goal is
to introduce a new technique to encourage physical activities among students.
Suppose that the technique had been randomly assigned to a few students and
turned out to be effective. This would improve physical activities of not only
assigned students, which in turn improve those of non-assigned students as well.
Thus it makes more sense to study the effect technique at the school level instead
of individual level.
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14.5 Some difficulties in causal inference
We address some concerns that are usualy present in causal studies.

• The ability to recover SATE (such as that of completely randomized ex-
periments) is referred to as internal validity. And the extent to which
the result of the study can be generalized to the population is referred to
as external validity. Sometimes, it is difficult for an experiment to have
external validity, so one has to adjust estimates of treatment effect to the
population.

• The experiment can affect the behaviors of the participants. Participants
in a study of effect of light on productivity are likely to be more produc-
tive during the experiment because they know they were being observed.
Possible solutions include not revealing the goal of the experiment to the
participants, and not telling them whether they are in the control or treat-
ment group.

• Missing pre-treatment data is usually not fatal as they are independent
of the treatment assignments. Missing outcome data, however, is very
common the in control group since those in the control group are less
likely to be emotionally engaged in the study. In this case, the ignorability
assumption is destroyed since the missingness depends on the treatment
assignments.

• Participants might not comply with the treatment assignment. In our
running example, a participant who was assigned treatment might forget
to take the supplement, or decide to stop taking it after a while. With
such noncompliance, can make our estimate completely invalid.
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Chapter 15

Causal inference with
regression

Let us review all variables that arise in a randomized experiment.

• A unit, denoted by 𝑖, refers to an individual person or object in a random
sample.

• Covariates 𝑥𝑖 are pre-treatment measurements. These are not required for
causal inference, but can be used to adjust for pre-treatment differences
between the treatment and control groups.

• The treatment assignment 𝑧𝑖 which is 1 for treated unit and 0 for controlled
units.

• The potential outcomes:
– 𝑦1𝑖 , the outcome if 𝑖 was to receive the treatment,
– 𝑦0𝑖 , the outcome if 𝑖 was to receive the control.

• The observed outcomes 𝑦𝑖. So 𝑦𝑖 = 𝑦1𝑖 if 𝑧𝑖 = 1 and 𝑦𝑖 = 𝑦0𝑖 if 𝑧𝑖 = 0.

15.1 Regression for simple difference estimate
We start with causal estimation using a regression of the outcome on the treat-
ment assignment variable.

𝑦𝑖 = 𝑎 + 𝑏𝑧𝑖 + 𝜀𝑖.

We use the Electric Company data, which is the data of a randomized experi-
ment to study the effect of a new educational TV program, The Electric Com-
pany, on children’s reading abilities. The experiment used the matched pairs
design, where each pair consists of two classes in a grade from a school with
the lowest reading scores. The students in these classes were assigned to take
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a pre-test at the beginning of the school year and a post-test at the end. The
data is contained in electric.csv.

library(bayesplot)
library(rstanarm)

Let us take a look at the data first.

electric <- read.csv("data/electric.csv")

head(electric)

X post_test pre_test grade treatment supp pair_id
1 1 48.9 13.8 1 1 1 1
2 2 70.5 16.5 1 1 0 2
3 3 89.7 18.5 1 1 1 3
4 4 44.2 8.8 1 1 0 4
5 5 77.5 15.3 1 1 1 5
6 6 84.7 15.0 1 1 0 6

To see the effects of the TV program on the reading abilities, we plot the his-
tograms of the post-test scores for both treatment and control groups. Here,
the vertical lines are the averages.
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Figure 15.1: The histograms of the post-test scores

We observe that the effect of the program varies across the years. We fit the
regression of the post-test on the treatment indicator.

fit_1 <- stan_glm(post_test ~ treatment, data=electric,
refresh=0)

print(fit_1)

stan_glm
family: gaussian [identity]
formula: post_test ~ treatment
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observations: 192
predictors: 2

------
Median MAD_SD

(Intercept) 94.3 1.7
treatment 5.7 2.5

Auxiliary parameter(s):
Median MAD_SD

sigma 17.6 0.9

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The estimate is 5.7 with 2.5 standard deviation. Since Figure 15.1 indicates
that the effect of the TV program varies across the grades, so we might consider
fitting separate regression models by the grades. Foe each grade, we store the
simulations of the difference estimate (the coefficient of treatment) in a matrix
named fit_2.

fit_2 <- array(NA, c(4000, 4))
colnames(fit_2) <- c("Grade 1", "Grade 2",

"Grade 3", "Grade 4")
for (k in 1:4) {
model <- stan_glm(post_test ~ treatment,

data=electric,
subset=(grade==k),
refresh=0)

fit_2[, k] <- as.matrix(model)[, 'treatment']
}

From these simulations, we can plot the 50% and 95% uncertainty intervals of
the difference estimate for each grade.

mcmc_intervals(fit_2)
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Figure 15.2: The point estimate of per-grade SATE, adjusted for the pre-test
scores with uncertainties

The result agrees with Figure 15.1 that the program has a larger effect on lower
grades. We also notice that the estimates for higher grades have lower standard
errors.

15.2 Adding pre-treatment covariates to the
model

We also have the pre-test scores as a covariate, which is highly correlated to the
post-test scores. We need to adjust for this covariate, otherwise our estimate
would be inaccurate due to the difference in the pre-test scores between the
control group and the treatment group.

For each grade, we fit regression models with the pre-test scores 𝑥𝑖:

𝑦 = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑥 + 𝜀.

Assume that the assignment is completely randomized, so it is independent of
the pre-treatment covariate; This implies conditional ignorability: 𝑧 ⟂ 𝑦0, 𝑦1|𝑥.
Consequently,
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𝔼[𝑦|𝑧 = 1, 𝑥] = 𝔼[𝑦1|𝑧 = 1, 𝑥] = 𝔼[𝑦1|𝑥]
𝔼[𝑦|𝑧 = 0, 𝑥] = 𝔼[𝑦0|𝑧 = 0, 𝑥] = 𝔼[𝑦0|𝑥].

This implies

𝜏SATE = 𝔼[𝑦1 − 𝑦0]
= 𝔼𝑥𝔼[𝑦1|𝑥] − 𝔼𝑥𝔼[𝑦1|𝑥]
= 𝔼𝑥𝔼[𝑦|𝑧 = 1, 𝑥] − 𝔼𝑥𝔼[𝑦|𝑧 = 0, 𝑥]
= 𝔼𝑥[(𝛽0 + 𝛽1 + 𝛽2𝑥) − (𝛽0 + 𝛽2𝑥)]
= 𝛽1.

Since the coefficient obtained from fitting the model, say ̂𝛽1, is an unbiased
estimator of 𝛽1, so it is an unbiased estimator of the average causal effect 𝜏SATE
as well.

Let us estimate the average causal effect by fitting the regression model in R.

fit_3 <- array(NA, c(4000, 4))
colnames(fit_3) <- c("Grade 1", "Grade 2",

"Grade 3", "Grade 4")
for (k in 1:4) {
model <- stan_glm(post_test ~ treatment + pre_test,

data=electric,
subset=(grade==k),
refresh=0)

fit_3[, k] <- as.matrix(model)[, 'treatment']
}

mcmc_intervals(fit_3)
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Figure 15.3: The point estimate of per-grade SATE, adjusted for the pre-test
scores with uncertainties

With the pre-test scores, the standard errors of the estimated treatment effects
become smaller.

15.2.1 Regression with interactions
We can add the interaction between the treatment and covariates to our model
as well. To illustrate this, we take the data of grade 4 students in the Electric
Company study, and fit a regression with an interaction between the treatment
and the pre-test score.

fit_4 <- stan_glm(post_test ~ treatment + pre_test
+ treatment:pre_test,
data=electric,
subset=(grade==4),
refresh=0)

print(fit_4)

stan_glm
family: gaussian [identity]
formula: post_test ~ treatment + pre_test + treatment:pre_test
observations: 42
predictors: 4
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subset: (grade == 4)
------

Median MAD_SD
(Intercept) 38.8 4.9
treatment 14.3 9.0
pre_test 0.7 0.0
treatment:pre_test -0.1 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 2.2 0.3

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The fitted model is the following:

𝑦 = 38.6 + 14.6𝑧 + 0.7𝑥 − 0.1𝑧𝑥 + 𝜀
= 38.6 + (14.6 − 0.1𝑥)𝑧 + 0.7𝑥 + 𝜀.

Our estimate of the treatment effect is the coefficient of 𝑧, which is 14.6 −
0.1𝑥. This allows us to have a covariate-dependent causal estimate. For the
grade 4 students, the minimum and maximum pre-test scores are 80 and 120,
respectively. So the treatment effect varies from 14.6 − 0.1 ∗ 120 = 2.6 to
14.6−0.1 ∗ 80 = 6.6. This example illustrates that including the interaction
allows us to see how the treatment effect varies with the covariates.
We can also estimate SATE (and PATE) by computing the averate over the
causal estimates of all units in the sample.

̂𝜏SATE = 1
𝑛

𝑛
∑
𝑖=1

(14.6 − 0.1𝑥𝑖) = 14.6 − 0.1 ̄𝑥,

which can be computed in R as follows:

sims <- as.matrix(fit_4)
n_sims <- nrow(sims)
is_grade_4 <- (electric$grade == 4)

pretest_4 <- electric$pre_test[is_grade_4]
mean_pretest_4 <- mean(pretest_4)

avg_effect <- sims[, 2] + sims[, 4]*mean_pretest_4
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print(avg_effect[1:10])

[1] 0.6597359 1.4787528 1.4710521 1.5079603 1.2501985 1.3890738 2.7665281
[8] 0.6622269 2.8731758 1.1845089

With this, we can compute the point estimate and the uncertainty.

print(c(median(avg_effect), mad(avg_effect)))

[1] 1.7747740 0.6423454

We note that this is similar to the estimate of SATE shown in Figure 15.3. It
also holds in general that the average of the causal estimates with an interaction
is the same as the estimate of the average causal effect without the interaction.

This way of obtaining a causal estimate can also be extended to two interactions
and above. For example, suppose we have two covariates 𝑥1, 𝑥2 and interactions
𝑧𝑥1 and 𝑧𝑥2. The regression model is

𝑦 = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑥1 + 𝛽3𝑥2 + 𝛽4𝑧𝑥1 + 𝛽5𝑧𝑥2 + 𝜀
= 𝛽0 + (𝛽1 + 𝛽4𝑥1 + 𝛽5𝑥2)𝑧 + 𝛽2𝑥1 + 𝛽3𝑥2 + 𝜀.

Thus, the estimated causal effect at covariate level 𝑥1 and 𝑥2 is 𝛽1+𝛽4𝑥1+𝛽5𝑥2
and an estimate of SATE is 𝛽1 + 𝛽4 ̄𝑥1 + 𝛽5 ̄𝑥2.

15.2.2 Do not add post-treatment covariates to the regres-
sion

In general, one should not adjust for post-treatment covariates (sometimes re-
ferred to as mediator). Here, adjusting for a variable means adding it as a
regression input. To see why, we consider the following example of a study of
the effect of child care services on the child’s intelligence.

• 𝑦 is the child’s IQ score.
• 𝑧 is the treatment assignment.
• 𝑥 is a pre-treatment covariate that indicates whether both parents have a

high school education.
• 𝑞 is a post-treatment covariate that measures parenting quality.

Suppose that the relationship between these variables follow the linear model:

𝑦 = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑥𝛽3𝑞 + 𝜀. (15.1)
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However, in most cases, the post-treatment covariate is not independent of the
treatment assignment. For example, we could have the following relationship
between the potential outcomes 𝑞 and 𝑧.

𝑞 = 1 + 0.2𝑧 + 𝜀′.

Assume further that the relationship between 𝑞 and 𝑧 follow SUTVA, which
implies that 𝜀′ for 𝑧 = 0 and 𝑧 = 1. Let us compare two families with the same
parenting quality, same high school education, but with different treatments:

Family 1: 𝑧1 = 0, 𝑞1 = 1
⇒ 𝑞01 = 1, 𝑞11 = 1.2, 𝜀′1 = 0

Family 2: 𝑧2 = 1, 𝑞2 = 1
⇒ 𝑞02 = 0.8, 𝑞12 = 2, 𝜀′ = −0.2.

Thus, we are actually comparing two families with different parenting skills: 𝑞01
and 𝑞02 . This example illustrates that, among families with the same parenting
quality (𝑞) and high school education (𝑥), there can be some variation in the
parenting skills (𝑞0). However, to estimate the average causal effect, we would
like to control 𝑞0, the parenting skills, as it is more related to the child’s IQ
before the treatment. This suggests that the coefficient 𝛽1 in Equation 15.1
would not be an appropriate estimate of the average causal effect.
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Chapter 16

Causal inference with
observational data

Observational data refers to data obtained from observing an event of interest;
for example, data of outcomes of a costly treatment, which is only applied to
patients with extremely poor health conditions. In this setting, we could have
a covariate that affects both the treatment and the outcome; such covariate is
usually called confounding covariate or confounder.

Here, “Health condition” is a confounder. Since the data does not come from
a randomized experiment, the difference-of-means is unsuited for estimating
the average causal effect; we can imagine that the average outcome among the
treated patients (the patients with poor health conditions) must be lower than
the average of the treated outcomes 𝑦1, and that among the controlled patients
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(the patients with poor health conditions) must be higher than the average of
the controlled outcomes 𝑦0.

16.1 Assumption in an observational study
Even when the data is not obtained from a randomized experiment, as long
as the ignorability assumption is satisfied, we can turn the causal estimation
problem into a linear regression problem. In an observational study, we must
make sure that the variables satisfy the ignorability assumption:

𝑦0, 𝑦1 ⟂ 𝑧|𝑥,

which is similar to the assumption for a randomized block experiment. The
difference is that, in an obversational study, the assumption is not implied by
the design of an experiment, but by our prior knowledge of the relationship
among the variables. If the ignorability assumption holds, the average causal
effect can be estimated using the coefficient 𝛽1 of the treatment assignment in
the regression model:

𝑦 = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑥 + 𝜀.

The proof of this can be found in Section 15.2.

So far, we have discussed causal estimation when there is only a single observed
confounder. In general, the causal effect can be estimated if confounders are all
observed. If not all confounders are observed, then we might risk introducing
some bias in our estimate.

16.1.1 Omitted variable bias
We can quantify the bias from omitting the confounder 𝑥 when the relationship
between the variables can be described with a linear regression model:

𝑦 = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑥 + 𝜀. (16.1)

Suppose that we did not aware of a potential confounder 𝑥 and fit a misspecified
model:

𝑦 = 𝛽′
0 + 𝛽′

1𝑧 + 𝜀′, (16.2)

where 𝛽′ and 𝛽′ is another set of coefficients. To measure the biased introduce
from using this model, we fit a regression of the confounder 𝑥 on the treatment
𝑧.
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𝑥 = 𝛾0 + 𝛾1𝑧 + 𝜀″. (16.3)

Substituting Equation 16.3 back into Equation 16.1 yields

𝑦 = 𝛽0 + 𝛽2𝛾0 + (𝛽1 + 𝛽2𝛾1)𝑧 + 𝜀 + 𝛽2𝜀″. (16.4)

Equating the coefficient of 𝑧 in Equation 16.2 and Equation 16.4 yields

𝛽′
1 = 𝛽1 + 𝛽2𝛾1.

We can see that our causal estimate 𝛽′
1 is biased. This also implies that, if a

covariate 𝑥 is not associated with the treatment (𝛾1 = 0) or if the covariate is
not associated with the outcome (𝛽2 = 0).

16.1.2 Imbalance of confounder distributions
An observed confounder is imbalanced when the distribution of the confounder
for the treatment group differs from that of the control group. Examples of
imbalanced confounder 𝑥 are shown in the following plots:

In the left plot, the distributions of 𝑥 for the control and treatment groups have
different means; while in the right plot, assuming that the mean is non-zero, the
distributions would have different second moments.

Causal estimation with imbalanced confounder distribution would force us to
rely more on the correctness of our model. For example, suppose that the true
model of the population is:

Treatment: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝜃 + 𝜀
Control: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝜀.

Consequently, the causal effect 𝜃 can be estimated by taking the averages of
both equations, which yields

𝜃 = ̄𝑦1 − ̄𝑦0 − 𝛽1( ̄𝑥1 − ̄𝑥0) − 𝛽2( ̄𝑥2
1 − ̄𝑥2

0),
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where ̄𝑦1, ̄𝑥1, ̄𝑥2
1 are the averages of the treatment group and ̄𝑦0, ̄𝑥0, ̄𝑥2

0 are the
averages of the control group.

Suppose that we wanted to keep it simple and estimate the causal effect using
the difference between the means:

𝜃′ = ̄𝑦1 − ̄𝑦0,

Then, our estimate would be off the true estimate by 𝛽1( ̄𝑥1 − ̄𝑥0) + 𝛽2( ̄𝑥2
1 − ̄𝑥2

0).
This bias would be small if the confounder distributions for the treatment and
the control groups are almost identical, which implies ̄𝑥1 ≈ ̄𝑥0 and ̄𝑥2

1 ≈ ̄𝑥2
0.

On the other hand, if the distributions are vastly different, then hte bias would
become large.

16.1.3 Lack of complete overlap
Overlap (or common support) is the intersection of the ranges of the confounder
data for the treatment and control groups. We say that the distributions have
complete overlap if their ranges coincide. Lack of complete overlap in the con-
founders leads to causal estimation problem, because for some observed values
of the confounder, we have no information on the counterfactual outcomes. The
plots below show examples the Electric Company data, which has the pre-test
score as a confounder. Here, the solid curve are the true confounder distribu-
tions for the treatment group (black dots) and the control group (gray dots).
The dashed lines in the left plot are regression lines of the post-test scores on
the treatment and the pre-test score, while the dashed lines on the right also
allow for an interaction between the two predictors. The causal effect at any
level of pre-test score is simply the vertical distance between the two solid lines.
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As the confounder distributions for the treatment and control groups do not com-
pletely overlap, our causal estimate (the vertical distance between the dashed
lines) totally underestimates the true average treatment effect (the vertical dis-
tance between the solid lines).

Nonetheless, it is still possible to estimate the treatment effect in the region
where the confounder is observed for both groups. As shown in the plots below,
by restricting our analysis to this region and fitting a linear regression (without
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or with an interaction) as before, we obtain an estimate of treatment effect that
is very accurate in this region.
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16.2 The Electric Company example
The Electric Company data that we used in the previous chapter, in fact, has
an additional covariate: the teacher for each class in the treatment group had
the choice of replacing or supplementing the current regular reading program by
the TV program; the choice is indicated by the covariate supp (0, 1, or NA for
every controlled class).

library(bayesplot)
library(rstanarm)

electric <- read.csv("data/electric.csv")

head(electric)

X post_test pre_test grade treatment supp pair_id
1 1 48.9 13.8 1 1 1 1
2 2 70.5 16.5 1 1 0 2
3 3 89.7 18.5 1 1 1 3
4 4 44.2 8.8 1 1 0 4
5 5 77.5 15.3 1 1 1 5
6 6 84.7 15.0 1 1 0 6

Suppose that we would like to estimate the causal effect of the supplement
versus the replacement among the classes that were assigned to watch the TV
program. Assuming that the pre-test score also affects the choice of supplement
(this is just for demonstration, as there can be many factors that affect the
choice of supplement), the relationship between the variables is illustrated by
the following graphical model:
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As post_test is affected by pre_test, we must adjust for the covariate in our
linear regression.

fit_supp <- array(NA, c(4000, 4))
colnames(fit_supp) <- c("Grade 1", "Grade 2",

"Grade 3", "Grade 4")
for (k in 1:4) {
model <- stan_glm(post_test ~ supp + pre_test,

data=electric,
subset=(grade==k) & (!is.na(supp)),
refresh=0)

fit_supp[, k] <- as.matrix(model)[, 'supp']
}

mcmc_intervals(fit_supp)
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Figure 16.1: The point estimate of per-grade SATE with uncertainties, adjusted
for the pre-test scores and the supplement indicators

We conclude from the plot that supplementing is more effective than replacing
the TV program in lower grades.

16.2.1 Examining overlap of the confounder distribution
We can plot histograms of the confounder (the pre-test score) for the treatment
and control groups. In each plot, the pink histogram is that of the treatment
group, and the blue histograms is that of the control group.

blue <- rgb(173,216,230, max=255,
alpha=80, names="lt.blue")

pink <- rgb(255,192,203, max=255,
alpha=80, names="lt.pink")

par(mfrow=c(1,4))
for (k in 1:4){

grade_k_data <- electric$pre_test[electric$grade==k &
!is.na(electric$supp)]

min_score <- min(grade_k_data)
max_score <- max(grade_k_data)
hist(grade_k_data[electric$supp==0],

breaks=seq(min_score, max_score, length.out=6),
xlim=c(min_score-1, max_score+1),
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ylim=c(0, 7),
main=paste("Grade", k), col=blue,
xlab="Pre-test score",
freq=TRUE)

hist(grade_k_data[electric$supp==1],
breaks=seq(min_score, max_score, length.out=6),
col=pink, freq=TRUE, add=TRUE)

}
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We clearly see the imbalance between the treatment and control groups in Grade
1 and Grade 4, and there is lack of complete overlap in Grade 3. In particular,
there are some classes in Grade 3 that supplemented the TV program and their
average pre-test scores are lower than those that replaced the regular reading
program with the TV program. We should keep these observations in mind
when assessing the accuracy of our causal estimates.
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Chapter 17

Subclassification and
propensity score matching

17.1 Subclassification
When the confounder is a discrete variable, subclassification is an easy way
to estimate the average causal effect. We demonstrate this on an example of
data more than 4000 children born in the 1980s. Some of the children were
received high-quality child care from the Infant Health and Development Pro-
gram (IHDP). We want to measure the effect of the child care on the cognitive
abilities, evaluated with an IQ-like test at age 3. The data is contained in
cc2.csv. Below, we show some of the attributes, namely age in months (age),
body weight (bw), mother’s education (educ), treatment (treat) and the IQ
score at age 3 (ppvtr.36).

set.seed(0)
library(rstanarm)
library(survey)

cc2 <- read.csv("data/cc2.csv")

head(cc2[, c('age', 'bw', 'educ', 'treat', 'ppvtr.36')])

age bw educ treat ppvtr.36
1 60.79671 1559 4 1 111
2 59.77823 2240 1 1 81
3 59.51540 1900 1 1 92
4 59.18686 1550 4 1 103
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5 58.79261 2270 1 1 81
6 58.49692 1550 2 1 94

To make it simple, we assume that the only confounder is the mother’s education.
This is the case when the program specifically targetted those families who
received only basic or no education.

The Childcare data recorded four levels of mother’s education: not a high
school graduate (lths), a high school graduate (hs), at some college (ltcoll),
and a college gradute (college)

head(cc2[, c("lths", "hs", "ltcoll", "college")])

lths hs ltcoll college
1 0 0 0 1
2 1 0 0 0
3 1 0 0 0
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0

In this case, the conditional treatment effect (CATE) for each level of mother’s
education is the difference of means within the level.

educ_list <- c("lths", "hs", "ltcoll", "college")

df <- data.frame(matrix(nrow = 4, ncol = 5))
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colnames(df) <- c("Mother\'s education", "Treatment effect", "Standard error", "#treated", "#controls")
df$"Mother\'s education" <- educ_list

for (k in 1:4){
edu <- educ_list[k]

iq_treat <- cc2$ppvtr.36[cc2$treat==1 & cc2[edu]==1]
iq_contr <- cc2$ppvtr.36[cc2$treat==0 & cc2[edu]==1]

n_treat <- length(iq_treat)
n_contr <- length(iq_contr)

tr_effect <- mean(iq_treat) - mean(iq_contr)
tr_se <- sqrt(var(iq_treat)/n_treat

+var(iq_contr)/n_contr)

df[k, "Treatment effect"] <- tr_effect
df[k, "Standard error"] <- tr_se
df[k, "#treated"] <- n_treat
df[k, "#controls"] <- n_contr

}

df

Mother's education Treatment effect Standard error #treated #controls
1 lths 9.298590 1.461121 126 1232
2 hs 4.057315 1.873075 82 1738
3 ltcoll 7.871995 2.402038 48 789
4 college 4.622168 2.322062 34 332

Notice that most mothers in this dataset did not finish high school, which should
be reflected when we combine the mother’s education-specific estimates to ob-
tain the average treatment effect. To this end, we calculate a weighted average
of the estimates, with weights defined by the number of children in each group;
such estimation method is referred to as subclassification.

̂𝜏ATE = 9.3 ∗ 1358 + 4.1 ∗ 1820 + 7.9 ∗ 837 + 4.6 ∗ 366
1358 + 1820 + 837 + 366 = 6.5,

and the standard error is √ 1.52∗13582+1.92∗18202+2.42∗8372+2.32∗3662
(1358+1820+837+366)2 = 1.04.

17.1.1 Average effect of treatment on the treated
In observational data, sometimes we only care about the treatment effect on
the treated group. For example, we would like to measure the treatment effect
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on the children that were eligible for the child care program, which are those in
the treatment group. In this case, we would like to measure the average effect
of treatment on the treated (ATT). We can also use subclassification to estimate
ATT, only counting the children in the treatment group.

̂𝜏ATT = 9.3 ∗ 126 + 4.1 ∗ 82 + 7.9 ∗ 48 + 4.6 ∗ 34
126 + 82 + 48 + 34 = 7.0,

and the standard error is √ 1.52∗1262+1.92∗822+2.42∗482+2.32∗342
(126+82+48+34)2 = 0.9.

So there is no visible difference between the estimates of the average treatment
over all children (ATE) and the average treatment over the treated children
(ATT) in this case.

17.2 Propensity score matching
Matching refers to any method of transforming the original data to make it look
like a sample from a randomized experiment, from which we can estimate causal
effects with little bias, even when our model is misspecified.

We will go over a specific type of matching, called propensity score matching.
Essentially, we use a logistic regression to compute a “score” for each unit; these
scores will be used to “match” between treated and untreated units.

We shall detail the propensity score matching as a five-step process below.

17.2.1 Step 1: Choose the confounders and estimand
Choosing confounders. Researchers often choose a list of confounders based on
previous literature. In the child care example, there are not many covariates, so
we decide to include them all.

Choosing estimands. We have talked about two estimands: the average treat-
ment effect (ATE) and the average treatment effect on the treated (ATT). We
will also occasionally mention the average treatment effect on the controlled
(ATC). The choice of estimand depends on the purpose of the estimation. In
the child care example, we want to evaluate how the child care program affects
the children that are eligible for the program, so we choose to estimate ATT.

To estimate ATT, we will keep the treatment group the same, while transforming
the control group to look like the treatment group. If we were to estimate the
effect of the treatment on the control, we would transform the treatment group
to match the control group instead.
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17.2.2 Step 2: Estimate the propensity score
In this step, we fit a logistic model to estimate the probability of a child receiving
the treatment, conditioning on the covariates.

ps_fit_1 <- stan_glm(treat ~ bw + bwg + hispanic + black
+ b.marr + lths + hs + ltcoll
+ work.dur + prenatal + sex + first
+ preterm + momage + dayskidh
+ income,
family=binomial(link='logit'),
data=cc2,
algorithm='optimizing', refresh=0)

We then use the fitted model to calculate the propensity score of each child,
that is, the predicted linear function for each child in the treatment group (the
reason we use the linear function instead of the predicted probability is because
it is easier to compare the distribution before and after the matching; see Step
4 below). Each score plays a role of summarizing the covariates of each unit as
a single number.

pscores <- predict(ps_fit_1)

print(pscores[1:10])

1 2 3 4 5 6
4.262056670 -0.210344313 0.554438239 2.917770699 0.009094453 1.744454213

7 8 9 10
1.576030355 -2.535481435 -0.702373486 0.532513542

17.2.3 Step 3: Match controlled units to the treated units
Our goal now is to transform the control group so that its distribution of the
propensity scores matches that of the treatment group. The transformation
that we use here is simply choosing, for each treated unit 𝑇𝑖 , the controlled
unit that has the closest propensity score to that of 𝑇𝑖. We can either match
with or without replacement.

Matching without replacement

In matching without replacement for ATT estimation, we match each treated
unit with the closest controlled unit that has not been matched yet. The di-
agram below shows a hypothetical example of matching without replacement;
the numbers shown are the propensity scores from the logistic regression.
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When matching for ATC estimation, we swtich the roles between the treated
units and the controlled units.

We can match a controlled unit to each treated unit using the provided matching
function.

source("library/matching.R")

matches <- matching(z=cc2$treat, score=pscores, replace=FALSE)

print(summary(matches))

Length Class Mode
match.ind 4381 -none- numeric
cnts 4381 -none- numeric
pairs 4381 -none- numeric

print(matches$match.ind[1:10])

[1] 1150 2899 730 2913 1455 2433 4131 1406 2689 3910

Here, the number in the 𝑖-th row is the index of the unit that has been matched
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with the 𝑖-th unit. Since we are matching without replacement, the number
of matched controlled units has to be the same as the number of units in the
treatment group, which is 290 in this example. Thus, the total number of
matched units is 290 ∗ 2 = 580.

matched <- cc2[matches$match.ind,]

nrow(matched)

[1] 580

With this new dataset, we will have to check that the covariates between the
treatment and control groups are balanced, and the propensity scores in both
groups sufficiently overlap; this is detailed in Step 4. But before that let us
have a glimpse of what is going to happen in the final step: we will run a
linear regression on the matched dataset and use the coefficient of the treatment
assignment to estimate ATT.

Code example for fitting a weighted regression model is shown in Listing 17.1
below.

Listing 17.1 Regression for matching without replacement

reg_ps <- stan_glm(ppvtr.36 ~ treat + bw + bwg + hispanic
+ black + b.marr + lths + hs + ltcoll
+ work.dur + prenatal + sex + first
+ preterm + momage + dayskidh + income,
data=cc2[matches$match.ind,],
algorithm='optimizing')

summary(reg_ps)['treat', 1:2]

Median MAD_SD
10.426381 1.520227

Note that fitting a regression model on a matched data without replacement is
the same as fitting on a weighted data, with weight equals 1 for each unit that
has been matched, and weight equals 0 for each unit that has not been matched.
This kind of “weighted data” interpretation will be relevant for the next type
of matching.

Matching with replacement

In matching with replacement for ATT estimation, we match each treated unit
with the closest controlled unit that might or might not have been matched. The
diagram below shows a hypothetical example of matching with replacement; the
numbers shown are the propensity scores from the logistic regression.
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When matching for ATC estimation, we swtich the roles between the treated
units and the controlled units.

For this type of matching, we can again use the matching function with
replace=TRUE.

matches.wr <- matching(z=cc2$treat, score=pscores, replace=TRUE)
wts.wr <- matches.wr$cnts

print(wts.wr[780:800])

[1] 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Here, the 𝑖-th number in wts.wr is the number of times that the 𝑖-unit has
been matched. In this example, the 781st unit has been matched twice, which
means that we should include two copies of this unit in the restructured control
group. In other words, we can treat each numbers in wts.wr as the weight of
the corresponding unit.

To fit a linear regression model with weighted data, we may use functions pro-
vided by the survey library. Specifically, we use svydesign to specify the
weigths and svyglm to fit the model. Here, we use ids=~1 for data with no
clusters.
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Code example for fitting a weighted regression model is shown in Listing 17.2
below.

Listing 17.2 Regression for matching with replacement

ps_fit_1_design <- svydesign(ids=~1,
weights=matches.wr$cnts,
data=cc2)

reg_ps.wr <- svyglm(ppvtr.36 ~ treat + bw + bwg + hispanic
+ black + b.marr + lths + hs + ltcoll
+ work.dur + prenatal + sex + first
+ preterm + momage + dayskidh + income,
design=ps_fit_1_design,
data=cc2)

summary(reg_ps.wr)$coef['treat', 1:2]

Estimate Std. Error
9.590492 2.015102

17.2.4 Step 4: Inspect balance and overlap in propensity
scores

As alluded in Step 3, we will check if (1) the covariates between the treatment
and control groups are balanced, and (2) the propensity scores in both groups
sufficiently overlap. Here, we will use balance function from the provided
balance.R to compute the difference in covariate means between treatment
and control groups.

# Uncomment to install required package
#install.packages("Hmisc")
source("library/balance.R")

covs <- c('bw', 'preterm', 'dayskidh', 'sex', 'first',
'age', 'black', 'hispanic', 'white', 'b.marr',
'lths', 'hs', 'ltcoll', 'college', 'work.dur',
'prenatal', 'momage')

bal_nr <- balance(rawdata=cc2[,covs], treat=cc2$treat,
matched=matches$cnts, estimand='ATT')

bal_nr.wr <- balance(rawdata=cc2[,covs], treat=cc2$treat,
matched=matches.wr$cnts, estimand='ATT')

After calling balance, the mean differences over all covariates before the match-
ing are stored in output$diff.means.raw, and those after the matching are
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stored in output$diff.means.matched. Here, we define a function named
plot_mean_diffs to plot these differences from a balance’s output.

plot_mean_diffs <- function(bal, title) {
pts <- bal$diff.means.raw[,4]
pts2 <- bal$diff.means.matched[,4]

K <- length(pts)

plot(c(pts,pts2), c(1:K, 1:K),
bty='n', xlab='', ylab='',
xaxt='n', yaxt='n', type='n',
main=title)

abline(v=0, lty=2)
points(pts, 1:K, cex=1)
points(pts2, 1:K, pch=19, cex=1)
axis(3)
axis(2, at=1:K, labels=covs,

las=2, hadj=1, lty=0)
}

Now, let us compare the absolute mean differences obtained from matching with
replacement and without replacement.

par(mfrow=c(1,2))

par(mar=c(1,4.3,7,2))
plot_mean_diffs(bal_nr, "Absolute mean differences\n Matching without replacement")

par(mar=c(1,4.3,7,2))
plot_mean_diffs(bal_nr.wr, "Absolute mean differences\n Matching with replacement")
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We see that matching with replacement has smaller mean differences, which
implies that it has a better balance.

To check the overlap, we inspect the histograms of the propensity scores in the
treatment and control groups.

par(mfrow=c(1,2))
# Plot the histograms of the propensity scores before matching
par(mar=c(5,4,2,1))
hist(pscores[cc2$treat==0], main="Before matching",

border="darkgrey", xlab="logit propensity scores",
freq=FALSE)

hist(pscores[cc2$treat==1], freq=FALSE, add=TRUE)
# Plot the histograms of the propensity after matching
par(mar=c(5,4,2,1))
hist(pscores[cc2[matches.wr$match.ind, 'treat']==0],

main="After matching", border="darkgrey",
xlab="logit propensity scores", freq=FALSE)

hist(pscores[cc2[matches.wr$match.ind, 'treat']==1], freq=FALSE, add=TRUE)
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We can see that the the propensity scores have a better overlap after matching.

17.2.5 Before step 5: Repeat steps 2-4 until a good bal-
ance is achieved

We do not want to proceed to Step 5 yet until we obtain a good balance in the
covariates. There are generally two ways to achieve a better balance:

• Changing the model for the propensity score. This can be done in several
ways:

– Adding interactions between the covariates
– Finding other potential confounders
– Transforming existing continuous variables

• Changing the way the propensity scores are used to restructure the data,
for example, to a different matching method.

17.2.6 Step 5: Fit the regression on the restructured data
As mentioned in Step 3, after we are satisfied with the balance, we can now fit
the linear regression model on the restructured dataset. Example code for fitting
a regression on matched data without replacement can be found in Listing 17.1,
and code for matched data with replacemenet can be found in Listing 17.2. The
estimate of average treatment effect is 10.4 ± 1.5 and 9.6 ± 2.0, respectively.
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17.2.7 Other considerations
There are several considerations that one has to keep in mind when performing
propensity score matching.

• It is not always a good idea to include all covariates in the list of potential
confounders. Here is a basic guideline on which covariates to choose:

– Do not include post-treatment covariates
– Do not include covariates that are strongly related to the treatment

but not strongly related to the outcome. An example of such co-
variate is instrumental variable with will be introduced in the next
chapter.

– Do include covariates that are strongly related to the outcome.
• Instead of using the propensity scores, we can simply compute the distance

between two observations using a known distance functions; for example,
the Euclidean distance: 𝑑(𝑋𝑖, 𝑋𝑗) = √∑𝐾

𝑘=1(𝑋𝑖𝑘 −𝑋𝑗𝑘)2 and the Maha-
lanobis distance: 𝑑(𝑋𝑖, 𝑋𝑗) = (𝑋𝑖 − 𝑋𝑗)𝑇Σ−1(𝑋𝑖 − 𝑋𝑗), where Σ is the
covariance matrix of the data.

• It is not neccessary to aim for an accurate model for the propensity score.
In fact, an accurate model might cause more problems than it solves. For
example, consider a logistic model that can perfectly predicts whether an
unit received the treatment or control. In this case, the propensity scores
are all 0 or 1, indicating that there is no overlap, and matching is no
differen than randomly assigned a controlled unit to each treated unit.

• There are several modifications for the matching algorithm:
– We can match each treated unit with 𝑘 > 1 controlled unit closest to

it; this is sometimes called 𝑘-to-1 matching.
– We can specify a threshold 𝑑 > 0 and match each treated unit with

all controlled units that are less than 𝑑 distance away.
– In the two algorithms above, we can give more weights to closer

matches and less weights to farther matches.

There is also an R library MatchIt which is dedicated to matching for causal
estimations. Check out this detailed example to get started.

17.3 Inverse probability weighting
We can also use propensity scores as units’ weights without any matching. The
idea is to weight the sample so that it is representative of the group of interest.

To illustrate the idea of inverse probability weighting, we consider the following
hypothetic scenario: Suppose for simplicity that there is only one confounder
𝑋 which has only two possible values: 𝑥1 and 𝑥2. Assume further that the
potential outcomes are:
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𝑦1(𝑥1) = 3, 𝑦0(𝑥1) = 1
𝑦1(𝑥2) = 2, 𝑦0(𝑥2) = 1,

and the probability scores are:

𝑝(𝑥1) = Pr[𝑍 = 1|𝑋 = 𝑥1] = 0.7, 𝑝(𝑥2) = Pr[𝑍 = 1|𝑋 = 𝑥2] = 0.4. (17.1)

Below is an example of count data generated from these conditional distribu-
tions.

𝑋 = 𝑥1 𝑋 = 𝑥2
𝑍 = 1 70 80
𝑍 = 0 30 120

𝜏 2 1

The ATE is 2∗70+2∗30+1∗80+1∗120
70+30+80+120 = 1.33. Due to the imbalance in the numbers

of observed 𝑦1 and 𝑦0 for each value of 𝑋, the difference-in-mean estimate of
3∗70+2∗80

70+80 − 1∗30+1∗120
30+120 = 1.47 does not exactly match the ATE.

The can improve our estimate by balancing the numbers of treated and con-
trolled units. If we were to know the conditional distribution Equation 19.1,
we could have scaled the number of treated units down by a factor of Pr[𝑍 =
1|𝑋 = 𝑥𝑖] and the number of controlled units by a factor of Pr[𝑍 = 0|𝑋 = 𝑥𝑖]
to obtain the so-called pseudo-population as shown below:

𝑋 = 𝑥1 𝑋 = 𝑥2
𝑍 = 1 100 200
𝑍 = 0 100 200

𝜏 2 1

Now the difference-in-mean estimate is accurate: 3∗100+2∗200
100+200 − 1∗100+1∗200

100+200 = 1.33,
which exactly matches the ATE. Since we generally do not know the conditional
distributions Equation 19.1, we estimate them using a logistic regression ̂𝑧 =
̂𝑝(𝑥) = logit−1(𝛽0 + 𝛽1𝑥).

In general, the inverse probability weighting estimate (IPW) is:

̂𝜏 IPW = 1
𝑛 ∑

𝑖;𝑧𝑖=1

𝑦𝑖
̂𝑝(𝑥𝑖)

− 1
𝑛 ∑

𝑖;𝑧𝑖=0

𝑦𝑖
1 − ̂𝑝(𝑥𝑖)

= 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖𝑧𝑖
̂𝑝(𝑥𝑖)

− 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖(1 − 𝑧𝑖)
1 − ̂𝑝(𝑥𝑖)

.
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Theoretically, if ̂𝑝 = 𝑝 and the ignorability assumption holds, then ̂𝜏 IPW is an
unbiased estimator of 𝜏ATE. To show this, we first compute the expectation of
the first term.

𝔼[ 𝑌 𝑍
𝑝(𝑋)] = 𝔼[𝔼[ 𝑌 𝑍

𝑝(𝑋)∣𝑋]]

= 𝔼[𝔼[𝑌 1 𝑇
𝑝(𝑋) ∣𝑋]]

= 𝔼[𝔼[𝑌
1|𝑋] 𝔼[𝑇 |𝑋]
𝑝(𝑋) ]

= 𝔼 [𝔼[𝑌 1|𝑋]]
= 𝔼[𝑌 1].

Similarly, we have 𝔼 [𝑌 (1−𝑍)
1−�̂�(𝑋) ] = 𝔼[𝑌 0]. It follows that 𝔼[𝜏 IPW] = 𝔼[𝑌 1] − 𝔼[𝑌 0].

For each unit (𝑥, 𝑧, 𝑦), we let ̂𝑝(𝑋) be the propensity score obtained from the
logistic regression. We will put a weight on each unit as follows:

• Estimating the average treatment effect (ATE)
– For every treated unit (𝑥, 𝑧, 𝑦), we put a weight of 1

�̂�(𝑥) .
– For every controlled unit (𝑥, 𝑧, 𝑦), we put a weight of 1

1−�̂�(𝑥) .
• Estimating the average effect of treatment on the treated (ATT)

– For every treated unit (𝑥, 𝑧, 𝑦), we put a weight of 1.
– For every controlled unit (𝑥, 𝑧, 𝑦), we put a weight of �̂�(𝑥)

1−�̂�(𝑥) .
• Estimating the average effect of treatment on the controlled (ATC)

– For every treated unit (𝑥, 𝑧, 𝑦), we put a weight of 1−�̂�(𝑥)
�̂�(𝑥) .

– For every controlled unit (𝑥, 𝑧, 𝑦), we put a weight of 1.
Below is example code for estimating ATT of the child care program using the
inverse probability weighting.

inv.logit <- plogis

wt.iptw <- inv.logit(pscores) / (1 - inv.logit(pscores))
wt.iptw[cc2$treat==0] <- wt.iptw[cc2$treat==0]
wt.iptw[cc2$treat==1] <- 1

ps_fit_iptw_design <- svydesign(ids=~1, weights=wt.iptw, data=cc2)
reg_ps.iptw <- svyglm(ppvtr.36 ~ treat + bw + bwg + hispanic

+ black + b.marr + lths + hs + ltcoll
+ work.dur + prenatal + sex + first
+ preterm + momage + dayskidh + income,
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design=ps_fit_iptw_design, data=cc2)

summary(reg_ps.iptw)$coef['treat', 1:2]

Estimate Std. Error
8.372319 2.332639
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Chapter 18

Instrumental variables

18.1 Motivation
Suppose that we want to estimate the effect of watching a TV show Sesame
Street on preschool children’s recognition of English letters. We might consider
an experiment where the treatment is watching Sesame Street. However, it
would be difficult for us to force the children to watch the TV show for prevent
them from watching it.

Instead, what we can encourage a random subgroup of the children to watch
the show. Now, we have an additional variable, the encouragement that affects
the treatment variable.

Let us take a look at the data, which is contained sesame.csv.

set.seed(0)
library(brms)
library(rstanarm)
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sesame <- read.csv("data/sesame.csv")

head(sesame[, c("encouraged", "watched", "setting", "site", "postlet")])

encouraged watched setting site postlet
1 1 0 2 1 30
2 1 1 2 1 37
3 0 1 2 1 46
4 0 0 2 1 14
5 0 1 2 1 63
6 0 1 2 1 36

The outcome is postlet, which is the post-treatment measurement of the letter
recognition task.

The encouragement is an example of an instrumental variable (IV), a variable
that affects the treatment but does not affect the outcome. This is an example
of quasi-experiment, that is, an experiment to study the causal effect without
random treatment assigment.

18.2 Terminologies for instrumental varialbes
In addition to the usual causal notations of the treatment variable 𝑇 , the out-
come variable 𝑦, and the confounders 𝑥, we also have:

• the instrumental variable 𝑧 affecting the treatment,
• the potential treatments 𝑇 0 and 𝑇 1 which is observed only if 𝑧 = 0 and

𝑧 = 1, respectively.
• the potential outcomes 𝑦0 and 𝑦1 which is observed only if 𝑧 = 0 and 𝑧 = 1,

respectively.

We summarize the variables in the graphical model below.
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We can estimate the effect of the instrument on the outcome—sometimes called
intent-to-treat (ITT) effect—using the difference in the means of encouraged
and not encouraged units effect. This is different than the treatment effect
which is usually the quantity of interest. We will discuss the formulations and
assumptions imposed by this model and ways to estimate the average treatment
effect.

We now categorize the units into four groups by their treatment response to the
instrument.

1. Compliers Instrument has a positive effect on their treatments, that is,
𝑇 1
𝑖 = 1 and 𝑇 0

𝑖 = 0.
2. Defiers Instrument has a negative effect on their treatments, that is, 𝑇 1

𝑖 =
0 and 𝑇 0

𝑖 = 1.
3. Never-takers Units who never take the treatment, that is, 𝑇 1

𝑖 = 𝑇 0
𝑖 = 0.

4. Always-takers Units who always take the treatment, that is, 𝑇 1
𝑖 = 𝑇 0

𝑖 =
1.

We are only interested in estimating the average treatment effect on the
compliers—this is called the complier average causal effect (CACE).

A good instrument induces many compliers and no defiers; we will discuss more
about desired properties of an instrument in the next section.

18.3 Assumptions for instrumental variables
In addition to SUTVA, the method of intrumental variables relies on several
assumptions.
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Ignorability of the instrument. We assume that the randomization in the
instrumental variable is independent of the potential treatments and the out-
comes:

𝑦1, 𝑦0, 𝑇 1, 𝑇 0 ⟂ 𝑧.

Unlike the standard causal analysis, the ignorability of the treatment does not
have to be satisfied.

Monotonicity. We assume that there is no defiers, that is, no unit who would
have taken the treatment if they were not encouraged and would not take the
treatment if they were encouraged.

Relevance. Of course, in an instrumental variable design, there would be no
hope in estimating the treatment effect if the instrument is unrelated to the
treatment. This assumption can be written as:

Pr[𝑇 1
𝑖 = 1|𝑧𝑖 = 1] > 0 and Pr[𝑇 1

𝑖 = 0|𝑧𝑖 = 0] > 0.

Exclusion restriction. We assume that there is no effect of the instrument
on the outcomes of the never-takers (who would not have taken the treatment
either way) and always-takers (who would have taken the treatment either way).

We can come up with a story that violates the exclusion restriction. In the
Sesame Street example, we could have parents who prohibited their children
from watching television (so the children were never-takers). But after being
encouraged to have their children watch the Sesame Street, they decided to
purchases a similar educational material for their children to read instead.

If there are some covariates 𝑥, we might instead assume the conditional ignora-
bility:

𝑦1, 𝑦0, 𝑇 1, 𝑇 0 ⟂ 𝑧|𝑥,

We will see that these assumptions lead to unbiasedness of the difference-in-
means estimation in the next section.

18.4 Intent-to-treat (ITT) effect and complier
average causal effec (CACE)

The following table shows hypothetical data of the Sesame Street experiment.
The bold numbers are observed values.
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Unit
𝑖

Potential
treat-
ment
𝑇 0
𝑖

Potential
treat-
ment
𝑇 1
𝑖

Unit Type
𝑐𝑖

Encouragement
𝑧𝑖

Potential
out-
come
𝑦0𝑖

Potential
out-
come
𝑦1𝑖

Instrument
effect
𝑦1𝑖 − 𝑦0𝑖

1 0 1 complier 0 67 76 9
2 0 1 complier 0 72 80 8
3 0 0 never-taker 0 68 68 0
4 1 1 always-

taker
0 76 76 0

5 1 1 always-
taker

0 74 74 0

6 0 1 complier 1 74 81 7
7 0 1 complier 1 68 78 10
8 0 0 never-taker 1 70 70 0
9 1 1 always-

taker
1 80 80 0

10 1 1 always-
taker

1 82 82 0

Assuming that the instrument assignments are random, this data satisfies all
the four assumptions above. Specifically, there is no defiers (no 𝑇 0

𝑖 = 1 and
𝑇 1
𝑖 = 0) and no instrument effect on the never-takers and always-takers.

Now let us calculate the intent-to-treat (ITT) effect using the difference in the
means of encouraged and not encouraged children, which in turn is the average
of the instrument effect 𝜏𝑖.

ITT = 9 + 8 + 0 + 0 + 0 + 7 + 10 + 0 + 0 + 0
10 = 3.4.

We can also calculate the complier average causal effect (CACE), using the
difference in the means of the treated and controlled compliers.

CACE = 9 + 8 + 7 + 10
4 = 8.5.

In our hypothetical data, we can write CACE in terms of ITT as follows:

CACE = ITT
4/10 = ITT

Pr[𝑐 = complier] =
𝔼[𝑦|𝑧 = 1] − 𝔼[𝑦|𝑧 = 0]

Pr[𝑐 = complier] .

18.4.1 Compute CACE using ITT
In a instrumental variable design, our quantity of interest is the average treat-
ment effect over the compliers, that is, the CACE. However, we generally do
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not observe which units are complier, so we cannot compute CACE directly
from the definition. But following computations will show that, under the four
assumptions above, we can compute CACE using ITT.

First, we have

ITT = 𝔼[𝑦|𝑧 = 1] − 𝔼[𝑦|𝑧 = 0]
= 𝔼[𝑦1 − 𝑦0]
= 𝔼[𝑦1 − 𝑦0|𝑐 = complier]Pr[𝑐 = complier]

+ 𝔼[𝑦1 − 𝑦0|𝑐 = defier]Pr[𝑐 = defier]
+ 𝔼[𝑦1 − 𝑦0|𝑐 = never-taker]Pr[𝑐 = never-taker]
+ 𝔼[𝑦1 − 𝑦0|𝑐 = always-taker]Pr[𝑐 = always-taker]

= 𝔼[𝑦1 − 𝑦0|𝑐 = complier]Pr[𝑐 = complier]
= CACE ∗ Pr[𝑐 = complier],

where the last equality follows from the monotonicity assumption (Pr[𝑐 =
defier] = 0) and the exclusion restriction assumption (𝑌 1 − 𝑌 0 = 0 for the
never-takers and always-takers). To remove Pr[𝑐 = complier], we consider
𝔼[𝑇 |𝑧 = 1] − 𝔼[𝑇 |𝑧 = 0]. Using the monotonicity assumption as before, we
obtain

𝔼[𝑇 |𝑧 = 1] − 𝔼[𝑇 |𝑧 = 0] = 𝔼[𝑇 1 − 𝑇 0]
= 𝔼[𝑇 1 − 𝑇 0|𝑐 = complier]Pr[𝑐 = complier]

+ 𝔼[𝑇 1 − 𝑇 0|𝑐 = defier]Pr[𝑐 = defier]
= 𝔼[𝑇 1 − 𝑇 0|𝑐 = complier]Pr[𝑐 = complier]
= Pr[𝑐 = complier],

which cannot be zero because of the assumption that the instrument must have
an effect on the treatment. Dividing these two expressions yields

CACE = 𝔼[𝑦|𝑧 = 1] − 𝔼[𝑦|𝑧 = 0]
𝔼[𝑇 |𝑧 = 1] − 𝔼[𝑇 |𝑧 = 0] .

Now, using the ignorability assumption, we can estimate the numerator using
the difference in the means of the outcomes of the encouraged children (𝑧 = 1)
and not encouraged children (𝑧 = 0), which can be computed with a linear
regression.

itt_zy <- stan_glm(postlet ~ encouraged, data=sesame,
refresh=0)
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coef(itt_zy)["encouraged"]

The coefficient of encouraged is our estimate of ITT. And we can estimate the
denominator using the difference in the means of the treatment assignments of
those two groups of children.

itt_zt <- stan_glm(watched ~ encouraged, data=sesame,
refresh=0)

coef(itt_zt)["encouraged"]

encouraged
0.3626182

The coefficient of encouraged is the proportion of compliers in the data. Divid-
ing the ITT estimate by the proportion, we obtain a CACE estimate, sometimes
called a Wald estimate.

wald_est <- coef(itt_zy)["encouraged"] / coef(itt_zt)["encouraged"]

wald_est

encouraged
7.901558

When there are covariates 𝑥, the CACE needs to be defined for each level of 𝑥,
and all of our derivations above have to be conditioned on 𝑥. More precisely,
with the conditional ignorability 𝑦1, 𝑦0, 𝑇 1, 𝑇 0 ⟂ 𝑧|𝑥 and the corresponding
assumptions, we have

CACE(𝑥) = 𝔼[𝑦|𝑧 = 1, 𝑥] − 𝔼[𝑦|𝑧 = 0, 𝑥]
𝔼[𝑇 |𝑧 = 1, 𝑥] − 𝔼[𝑇 |𝑧 = 0, 𝑥] .

18.5 Two-stage least squares
We discuss a general method of estimating CACE, called two-stage least square
(2SLS).

In 2SLS, we pe form two linear regressions:

1. Regression of the treatment variable on the instrument:

̂𝑇 = 𝛼0 + 𝛼1𝑧1.
2. Regression of the outcome on the first model’s predicted treatment:
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𝑦 = 𝛽0 + 𝛽1 ̂𝑇 + 𝜀.

Here is an example of 2SLS on the Sesame Street data.

fit_2a <- stan_glm(watched ~ encouraged, data=sesame,
refresh=0)

sesame$watched_hat <- fit_2a$fitted
fit_2b <- stan_glm(postlet ~ watched_hat, data=sesame,

refresh=0)

fit_2b

stan_glm
family: gaussian [identity]
formula: postlet ~ watched_hat
observations: 240
predictors: 2

------
Median MAD_SD

(Intercept) 20.5 4.0
watched_hat 8.1 5.0

Auxiliary parameter(s):
Median MAD_SD

sigma 13.3 0.6

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Here, the estimated treatment effect is 8.1. However, the second regression does
not give the correct standard error as it has to be computed from the observed
treatment assignments, not the predicted one. Instead, we can fit 2SLS using
the brms library and return the correct standard error.

f1 <- bf(watched ~ encour)
f2 <- bf(postlet ~ watched)
IV_brm_a <- brm(f1 + f2, data=sesame, refresh=0)

IV_brm_a

Family: MV(gaussian, gaussian)
Links: mu = identity; sigma = identity

mu = identity; sigma = identity
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Formula: watched ~ encour
postlet ~ watched

Data: sesame (Number of observations: 240)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

watched_Intercept 0.55 0.04 0.47 0.63 1.00 3977 3069
postlet_Intercept 20.44 3.71 13.37 28.21 1.00 2076 2310
watched_encour 0.36 0.05 0.26 0.46 1.00 4128 2913
postlet_watched 8.10 4.69 -1.61 17.05 1.00 1956 1862

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma_watched 0.38 0.02 0.35 0.42 1.00 4661 2943
sigma_postlet 12.64 0.69 11.47 14.19 1.00 2790 2448

Residual Correlations:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS

rescor(watched,postlet) 0.16 0.15 -0.13 0.45 1.00 1839
Tail_ESS

rescor(watched,postlet) 2117

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

We can also incorporate the covariates by adding them to both regression models.
For example, let us add two covariates: site and setting to our models.

f1 <- bf(watched ~ encour + prelet + setting + factor(site))
f2 <- bf(postlet ~ watched + prelet + setting + factor(site))
IV_brm_b <- brm(f1 + f2, data=sesame, refresh=0)

IV_brm_b

Family: MV(gaussian, gaussian)
Links: mu = identity; sigma = identity

mu = identity; sigma = identity
Formula: watched ~ encour + prelet + setting + factor(site)

postlet ~ watched + prelet + setting + factor(site)
Data: sesame (Number of observations: 240)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
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Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

watched_Intercept 0.66 0.11 0.45 0.87 1.00 3995 3119
postlet_Intercept 1.33 4.51 -7.62 10.27 1.00 1803 1713
watched_encour 0.34 0.05 0.24 0.44 1.00 5514 3055
watched_prelet 0.01 0.00 -0.00 0.01 1.00 6257 3176
watched_setting -0.05 0.05 -0.16 0.05 1.00 5656 2961
watched_factorsite2 0.03 0.07 -0.10 0.17 1.00 3359 2622
watched_factorsite3 -0.11 0.07 -0.24 0.02 1.00 3467 2980
watched_factorsite4 -0.34 0.07 -0.49 -0.20 1.00 3891 3161
watched_factorsite5 -0.29 0.10 -0.49 -0.10 1.00 3778 3169
postlet_watched 13.90 3.86 6.40 21.33 1.00 1721 1917
postlet_prelet 0.70 0.08 0.56 0.85 1.00 5399 2797
postlet_setting 1.60 1.42 -1.20 4.39 1.00 3497 3150
postlet_factorsite2 8.39 1.87 4.64 12.05 1.00 4126 3028
postlet_factorsite3 -3.98 1.76 -7.40 -0.43 1.00 3237 2916
postlet_factorsite4 0.87 2.32 -3.67 5.58 1.00 2094 2162
postlet_factorsite5 2.69 2.81 -2.85 8.26 1.00 3138 2528

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma_watched 0.36 0.02 0.33 0.39 1.00 5986 2795
sigma_postlet 9.44 0.54 8.51 10.63 1.00 3014 2271

Residual Correlations:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS

rescor(watched,postlet) -0.18 0.15 -0.46 0.13 1.00 1692
Tail_ESS

rescor(watched,postlet) 2050

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The instrumental variables’ treatment effect estimate is the coefficient of
postlet_watched, which is 13.9 with standard error 3.9.
The 2SLS method can be easily extended to continuous instrument and treat-
ment variables. But we must be careful in the case of binary instrument and
continuous treatment as there is no universal way—as least without parametric
assumptions—to quantify the instrument’s effect on the treatment.
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18.6 Multiple instruments, treatments and co-
variates

We can have multiple variables playing different roles in the instrumental vari-
ables model. In general, we have

• The outcome 𝑦
• Multiple treatments 𝑇1,… , 𝑇𝑘
• Multiple instruments 𝑧1,… , 𝑧𝑚; these variables only affect the outcome

through the treatments.
• Multiple covariates 𝑥1,… , 𝑥𝑙; these variables affect the outcomes directly.

For each treatment and each instrument, we categorized the units by the com-
pliance as follows:

• Compliers Instrument has a positive (negative) effect on their treat-
ments.

• Never-takers and Always-taker Instrument has no effect on their treat-
ments.

• Defiers Instrument has a negative (positive) effect on their treatments.

In order to estimate the CACE of each treatment’s the following assumptions
must be satisfied:

• Ignorability of the instrument 𝑦1, 𝑦0, 𝑇 1
𝑖 , 𝑇 0

𝑖 ⟂ 𝑧𝑗|𝑥1,… , 𝑥𝑙 for 𝑖 =
1,… , 𝑘 and 𝑗 = 1… ,𝑚.

• Monotonicity There is no defier, that is, no unit who reacts in the op-
posite direction of what we expect.

• Relevance The instrument and the treatment must be related.
• Exclusion restriction There is no instrument effect on the outcomes of

the never-takers and always-takers.

In addition, to identify all treatment effects, we have to ensure that any combi-
nation of the observed treatments can be attained by adjusting the instruments;
this only happens when the number of instruments is equal or greater than the
number of treatments.

• Full rank model 𝑚 = 𝑘 (exactly identified) or 𝑚 > 𝑘 (overidentified).

With these assumptions, we can estimate the treatment effect(s) using the fol-
lowing 2SLS.
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̂𝑇1 = 𝛼1 +
𝑘

∑
𝑗=1

𝛼1𝑗𝑧𝑗 +
𝑙

∑
𝑗=1

𝛿1𝑗𝑥𝑗

̂𝑇2 = 𝛼2 +
𝑘

∑
𝑗=1

𝛼2𝑗𝑧𝑗 +
𝑙

∑
𝑗=1

𝛿2𝑗𝑥𝑗

⋮

̂𝑇𝑚 = 𝛼𝑚 +
𝑘

∑
𝑗=1

𝛼𝑚𝑗𝑧𝑗 +
𝑙

∑
𝑗=1

𝛿𝑚𝑗𝑥𝑗

𝑦 = 𝛽0 +
𝑚
∑
𝑖=1

𝛽𝑖 ̂𝑇𝑖 +
𝑙

∑
𝑖=1

𝛾𝑖𝑥𝑖 + 𝜀.

As an example, we apply this method on cigarette sales data in the 48 continental
US States in 1995 from Webel (2011).

cigarette <- read.csv("data/cigarette.csv")

head(cigarette[, c("packs", "rprice", "rincome", "salestax", "cigtax")])

packs rprice rincome salestax cigtax
1 101.08543 103.9182 12.91535 0.9216975 26.57481
2 111.04297 115.1854 12.16907 5.4850193 36.41732
3 71.95417 130.3199 13.53964 6.2057067 42.86964
4 56.85931 138.1264 16.07359 9.0363074 40.02625
5 82.58292 109.8097 16.31556 0.0000000 28.87139
6 79.47219 143.2287 20.96236 8.1072834 48.55643

We would like to estimate the treatment effect of cigarette price (rprice) on
the number of cigarette packs sold (packs). However, the price itself might
be affected by the demand for cigarettes; so we instead add two instrumental
variables that are rather affected by fiscal policy, namely sales tax (salestax)
and cigarette tax (cigtax). We also has income (rincome) as a covariate. Our
model is summarized in the following graph:
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With this, we can now perform 2SLS using brm.

lm1 <- bf(log(rprice) ~ salestax + cigtax + log(rincome))
lm2 <- bf(log(packs) ~ log(rprice) + log(rincome))
IV_cig <- brm(lm1 + lm2, data=cigarette, refresh=0)

IV_cig

Family: MV(gaussian, gaussian)
Links: mu = identity; sigma = identity

mu = identity; sigma = identity
Formula: log(rprice) ~ salestax + cigtax + log(rincome)

log(packs) ~ log(rprice) + log(rincome)
Data: cigarette (Number of observations: 48)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS

logrprice_Intercept 4.10 0.10 3.89 4.30 1.00 3290
logpacks_Intercept 9.90 1.10 7.75 12.02 1.00 4381
logrprice_salestax 0.01 0.00 0.01 0.02 1.00 6481
logrprice_cigtax 0.01 0.00 0.01 0.01 1.00 4017
logrprice_logrincome 0.11 0.04 0.03 0.19 1.00 3254
logpacks_logrprice -1.28 0.28 -1.83 -0.74 1.00 2792
logpacks_logrincome 0.29 0.25 -0.18 0.77 1.00 2662

Tail_ESS
logrprice_Intercept 2875
logpacks_Intercept 2757
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logrprice_salestax 3128
logrprice_cigtax 3607
logrprice_logrincome 2812
logpacks_logrprice 2425
logpacks_logrincome 2699

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma_logrprice 0.03 0.00 0.03 0.04 1.00 3110 2668
sigma_logpacks 0.20 0.02 0.16 0.25 1.00 2959 2399

Residual Correlations:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS

rescor(logrprice,logpacks) -0.25 0.15 -0.53 0.05 1.00 2788
Tail_ESS

rescor(logrprice,logpacks) 2582

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The point estimate of the coefficient is −1.28 with standard error 0.28, which
implies that 1% increase in cigarette price would decrease cigarette consumption
by −1.00% − 1.56%. Note that what we just estimated is the treatment effect
on the complier states, that is, the states that would increase the cigarette price
as a result of the tax raises.

18.7 Testing the assumptions
The method of instrument variables require many assumptions, some of which
can be explained away with the prior knowledge about the variables. Even if
this is not the case, we can still test some of the assumptions from the data.

18.7.1 Testing relevance
Not only the instrument must be related to the treatment, the relationship
must be strong enough so that we can estimate the treatment effect reliably. A
common problem is when we have a weak instrument, an instrument that does
not have a strong relationship with the treatment, which can lead to biased
estimates.

To test the relevance, we can use the joint 𝐹 -test to compare the first-stage
regression with and without the instruments; and we reject the null hypothesis
if the model with the instruments has better predictive power. For more details
on the join F-test, see e.g. James et al. (2021, chap. 3.2) and Hanck et al.
(2019, chap. 7.3).
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The usual statistical test with a specified type I error does not exclude weak
instrument, so we have to come up with a new criteria on the F-statistic in order
to decide if the instrument is strong enough. A rule of thumb says that an F-
statistic greater than 10 is sufficient. For more reliable cutoffs and other testing
methods for weak instruments, see Stock and Yogo (2002) for an extensive study.

18.7.2 Testing exclusion restriction
One way to test the exclusion restriction is by performing 2SLS only on the
group of always-takers and never-takers and see if the effect of the instrument
is negligible.

Another way is by fitting the second-stage regression with the observed treat-
ment and the instrument:

𝑦 = 𝛽0 +
𝑘

∑
𝑖=1

𝛼𝑖𝑧𝑖 +
𝑚
∑
𝑖=1

𝛽𝑖𝑇𝑖 +
𝑙

∑
𝑖=1

𝛾𝑖𝑥𝑖 + 𝜀.

The exclusion restriction says that the instrument only affects the outcome
through the treatment, so we can use the joint 𝐹 -test to see if some of 𝛼𝑖 ≠ 0,
in which case we say that the assumption is violated.

When the 2SLS model is overidentified, that is, when there is more instruments
than the treatments, there is also Sargan test, which look at the relationship
between the residuals of the second-stage model and the instruments, and we
reject the null if the relationship is significant.
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Chapter 19

Regression discontinuity

Instead of a randomized experiment, we can design an experiment with no
random element, and our variables still satisfy the ignorability assumption.

One possible way to do this is by regression continuity. The basic idea is to study
the behavior of the outcome 𝑦 over a range of a continuous variable 𝑋, often
called the forcing variable. Assume that, from prior knowledge, we expect 𝑦
to be a smooth function of 𝑋. If there is a sudden jump in 𝑦 at a particular
value 𝑋 = 𝑐, it is possible that the sudden jump is caused by the effect of the
treatment.

Figure 19.1: An example of regression discontinuity

In this case, we can define the treatment 𝑧 with 𝑧 = 1 if 𝑧 ≥ 𝑐 and 𝑧 = 0
otherwise. This design has a severe overlap problem as the values of 𝑥 between
the treatment and control groups are disjoint. We can only estimate where the
groups overlap, that is, at 𝑋 = 𝑐. Thus we are interested in the local average
treatment effect (LATE) at 𝑋 = 𝑐, which can be computed as follows:
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𝜏SRD = 𝔼[𝑦1 − 𝑦0|𝑋 = 𝑐].

Right now, it is not possible to directly compute 𝜏SRD as it involves the coun-
terfactual. So we have to make some assumptions first.

Assumptions

1. Conditional ignorability:

𝑦1, 𝑦0 ⟂ 𝑧|𝑋,

which is automatically satisfied since 𝑧 is deterministic.

2. Continuity of the expected potential outcomes with respect to the forcing
variable:

𝔼[𝑦1|𝑋] and 𝔼[𝑦0|𝑋] are continuous in 𝑋.

With these assumptions, the average treatment effect can be computed as fol-
lows:

𝜏SRD = 𝔼[𝑦1 − 𝑦0|𝑋 = 𝑐]. (19.1)

In other words, we can estimate SATE using the difference between the values
of the two linear functions at 𝑋 = 𝑐.
We now show that Equation 19.1 holds under the assumptions. By the continuity
of the outcome, the ignorability, and SUTVA, we have

𝔼[𝑦1|𝑋 = 𝑐] = lim
𝑥↑𝑐

𝔼[𝑦1|𝑋 = 𝑥] = lim
𝑥↑𝑐

𝔼[𝑦1|𝑧 = 1,𝑋 = 𝑥] = lim
𝑥↑𝑐

𝔼[𝑦|𝑋 = 𝑥].

Similarly, we have 𝔼[𝑦0|𝑋 = 𝑐] = lim𝑥↓𝑐 𝔼[𝑦|𝑋 = 𝑥]. It follows that

𝜏SRD = lim
𝑥↑𝑐

𝔼[𝑦|𝑋 = 𝑥] − lim
𝑥↓𝑐

𝔼[𝑦|𝑋 = 𝑥].

Consequently, we can estimate LATE using the difference between the values
of the linear functions at 𝑋 = 𝑐. As there is no overlap at any other value of
𝑋, it is not possible to estimate LATE at these points since we cannot observe
couterfactuals. Instead, we have to extrapolate the LATE at 𝑋 = 𝑐 other values
of 𝑋. The estimates of LATE can be seen as the vertical distance between two
red lines in the plot below.
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Figure 19.2: Extrapolation of LATE estimate at the cutoff

19.1 Deriving the linear regression
To find the linear regression that gives us an estimate of LATE, we first subtract
the forcing variable by the cutoff.

𝑥′ = 𝑥 − 𝑐.

Now we can write the equations for the two linear regression with intercepts 𝛼0
and 𝛼0 + 𝛿 as follows:

Control: 𝑦0 = 𝛼0 + 𝛼1𝑥′ + error
Treatment: 𝑦1 = 𝛼0 + 𝛿 + 𝛽1𝑥′ + error.

Taking the expectation on both equations, conditioning on 𝑥 = 𝑐 (or 𝑥′ = 0),

𝔼[𝑦1|𝑥 = 𝑐] − 𝔼[𝑦0|𝑥 = 𝑐] = (𝛼0 + 𝛿) − 𝛼0 = 𝛿.

The combination of two models above is equivalent to a single interactive model:

𝑦 = 𝛼0 + 𝛿𝑧 + 𝛼1𝑥′ + (𝛽1 − 𝛼1)𝑧𝑥′ + error.

Notice that 𝛿 is a coefficient of the treatment variable 𝑧. So we can fit a lin-
ear regression (possibly with an interaction between the treatment and forcing
variable) and obtain the coefficient of the treatment variable as an estimate of
LATE.

Only regress near the cutoff. It is a good practice to fit the regression only
on a small interval around the cutoff—this is to prevent the points that are far
away from the cutoff to have any effect on the local estimate, as the following
figure illustrates.
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Figure 19.3: Left: Regressions on all points. Right: Regression on a small
interval around the cutoff

19.2 Example: The effect of educational support
on test scores in Chile

As an example, we consider the data from the Chilean government, who im-
plemented “900 schools program” in an attempt to improve the performance
of struggling public schools. The educational resources have been distributed
to schools whose mean fourth-grade test scores are below a cutoff. Here, the
forcing variable is the mean test score and the outcome is the follow-up reading
test score in 1992.

Here is the list of variables that we are going to use:

Name Description
read92 The score of reading test in 1992
eligible 1 if rule2 is less than cutoff, 0 otherwise
rule2 the earlier test score minus cutoff
cutoff The test score cutoff for educational support
read88 The score of reading test in 1988
math88 The score of math test in 1988

The data is contained in chile.csv.

set.seed(0)
library(brms)
library(rstanarm)

chile <- read.csv("data/chile.csv")

head(chile[, c("eligible", "rule2", "cutoff", "read88", "math88", "read92")])

eligible rule2 cutoff read88 math88 read92
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1 0 3.41499853 49.4 54.37 51.26 57.000
2 0 31.81499672 43.4 79.06 71.37 85.515
3 0 4.44500113 43.4 47.76 47.93 51.971
4 0 16.79999733 46.4 65.13 61.27 66.374
5 0 0.09499893 49.4 49.26 49.73 52.500
6 1 -2.03000116 46.4 50.51 38.23 55.333

Here, eligible is the treatment variable and rule2 is the forcing variable. In
each group, the expected reading score in 1992 should move continuously along
the earlier test score, so expect the continuity assumption to be satisfied. The
forcing variable rule2 is already subtracted by the score cutoff; hence, we are
ready to fit the model with an interaction. As mentioned before, we fit the
regression only on a small interval around the cutoff. In this example, the cutoff
for rule2 is zero, so we shall fit on the subset of schools whose rule2 is between
−5 and 5.

fit_1 <- stan_glm(read92 ~ eligible + rule2 + eligible:rule2
+ read88 + math88,
data=chile, subset = abs(rule2)<5,
refresh=0)

fit_1

stan_glm
family: gaussian [identity]
formula: read92 ~ eligible + rule2 + eligible:rule2 + read88 + math88
observations: 883
predictors: 6
subset: abs(rule2) < 5

------
Median MAD_SD

(Intercept) 23.4 4.4
eligible 2.1 0.9
rule2 0.1 0.2
read88 0.6 0.1
math88 0.2 0.1
eligible:rule2 0.1 0.3

Auxiliary parameter(s):
Median MAD_SD

sigma 6.9 0.2

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
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The estimate of LATE is 2.1 with standard error 0.9. Let us take a look at the
regression lines.
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The data is too noisy to estimate the interaction, so we might instead fit the
model without the interaction. In this case, the two lines are parallel to each
other.

fit_2 <- stan_glm(read92 ~ eligible + rule2
+ read88 + math88,
data=chile, subset = abs(rule2)<5,
refresh=0)

fit_2

stan_glm
family: gaussian [identity]
formula: read92 ~ eligible + rule2 + read88 + math88
observations: 883
predictors: 5
subset: abs(rule2) < 5

------
Median MAD_SD

(Intercept) 23.5 4.3
eligible 2.1 0.9
rule2 0.1 0.2
read88 0.6 0.1
math88 0.2 0.1
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Auxiliary parameter(s):
Median MAD_SD

sigma 6.9 0.2

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

We see that the estimate of LATE is the same as before. Let us take a look at
the regression lines.

−4 −2 0 2 4
Pre−test score

P
os

t−
te

st
 s

co
re

40
60

80

239



Chapter 20

Difference-in-differences

20.1 Example: effect of minimum wage on em-
ployment

Suppose that we would like to estimate the effect of raising the minimum wage
on employment. With a lot of money and power, we could perform a randomized
experiment by flipping a coin for each local market in countries. If it comes up
head, we raise the minimum wage; if it comes up tail, we keep it the same.

Of course, this is just a thought experiment—the randomized experiment is not
feasible. Nonetheless, it is possible to estimate the treatment effect when we
have before-after data of a pair of units: both are controlled before, but only one
of them is treated after. This is what Card and Krueger (1993) did after seeing
that New Jersey’s minimum wage was about to be raised from $4.25 to $5.05 in
November 1992, while a neighboring Pennsylvania’s minimum wage stayed the
same at $4.25. They seized this opportunity and fielded two surveys to 400 fast
food restaurants in both states: the first one in February 1992 and the second
one in November 1992.

Let 𝛼 and 𝛽 be the deployment in New Jersey and Pennsylvania, respectively.
Let 𝛿 be the effect of raising the minimum wage, and assume that any other
factor had the same effect 𝛾 on both states (which might be possible since these
two are adjacent). The data of employment obtained from the surveys would
look like the following table:

February 1992 November 1992 Difference
New Jersey 𝛼 𝛼 + 𝛾 + 𝛿 𝛾 + 𝛿
Pennsylvania 𝛽 𝛽 + 𝛾 𝛾
Difference 𝛿
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We see that the treatment effect 𝛿 is the difference between the state-wise before-
and-after differences, or the difference-in-differences. Of course, this generally
does not match the treatment effect due to noises, in which case we have the
difference-in-differences (DID) estimate of the treatment effect.

The raw data can be downloaded from Card’s personal website. Here, we will
use the preprocessed data stored in wage92.csv.

set.seed(0)
library(rstanarm)

wage92 <- read.csv("data/wage92.csv")
wage92 <- na.omit(wage92) # remove NA rows

head(wage92[, c("d_nj",
"y_ft_employment_before",
"y_ft_employment_after")])

d_nj y_ft_employment_before y_ft_employment_after
4 0 34.0 20.0
5 0 24.0 35.5
7 0 70.5 29.0
8 0 23.5 36.5
9 0 11.0 11.0
10 0 9.0 8.5

Below are descriptions of the relevant variables:

Name Description
d_nj 1 if New Jersey; 0 if Pennsylvania (Treatment)
y_ft_employment_beforeFull time equivalent employment before treatment

(Outcome)
y_ft_employment_afterFull time equivalent employment after treatment

(Outcome)

Now we can compute the difference-in-differences estimate using the difference
in the means of the employments.

wage_nj <- subset(wage92, d_nj == 1)
wage_pa <- subset(wage92, d_nj == 0)

before_nj <- mean(wage_nj$y_ft_employment_before)
after_nj <- mean(wage_nj$y_ft_employment_after)
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diff_nj <- after_nj - before_nj

before_pa <- mean(wage_pa$y_ft_employment_before)
after_pa <- mean(wage_pa$y_ft_employment_after)
diff_pa <- after_pa - before_pa

did <- diff_nj - diff_pa

Let us summarize this in a table as shown above.

result <- data.frame(State = c("New Jersey", "Pennsylvania", "Difference"),
Before = c(before_nj, before_pa, NA),
After = c(after_nj, after_pa, NA),
Difference = c(diff_nj, diff_pa, did))

result

State Before After Difference
1 New Jersey 20.65775 21.04842 0.390669
2 Pennsylvania 23.70455 21.82576 -1.878788
3 Difference NA NA 2.269457

The DID estimate tells us that raising the minimum wage from $4.25 to $5.05
would increase the employment by 2.27 on average.

20.2 Regression for the difference-in-differences
estimate

We can also use a linear regression to obtain the DID estimate. Let 𝑦before and
𝑦after be the outcome before and after the time period, and 𝑧 be the treatment
assignment. We can regress the difference on the treatment variable:

𝑦after − 𝑦before = 𝛽 + 𝛿𝑧 + 𝜀. (20.1)

Then, the coefficient of the interaction term 𝛿 is the DID estimate. This is
because

𝔼[𝑦after − 𝑦before|𝑧 = 1] − 𝔼[𝑦after − 𝑦before|𝑧 = 0] = (𝛽0 + 𝛿) − 𝛽0 = 𝛿.

Let us try this method on the employment data. First, we have to combine the
employments before and after the wage raise into a single column, and add a
time indicator.
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fit_1 <- stan_glm((y_ft_employment_after - y_ft_employment_before) ~ d_nj,
data=wage92,
seed=0, refresh=0)

print(fit_1, digit=2)

stan_glm
family: gaussian [identity]
formula: (y_ft_employment_after - y_ft_employment_before) ~ d_nj
observations: 350
predictors: 2

------
Median MAD_SD

(Intercept) -1.88 1.09
d_nj 2.23 1.17

Auxiliary parameter(s):
Median MAD_SD

sigma 8.74 0.33

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The DID estimate is 2.23, with 1.17 standard error, which is close to the point
estimate of 2.27 that we just computed directly from the differences between
the means.

20.2.1 Different observations before and after the treat-
ment time

Let 𝑃 be a time indicator with 𝑃 = 0 and 𝑃 = 1 signifies the time before
and after the treatment took effect, respectively. If the observations at 𝑃 = 0
are different than those at 𝑃 = 1, then we cannot compute 𝑦after − 𝑦before.
Assuming that the observations in each of the treatment and control groups
are independently from the same distribution, we can instead fit the following
regression with an interaction term:

𝑦 = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑃 + 𝛿𝑧𝑃 + 𝜀.

The DID estimate is the coefficient 𝛿 of the interaction term, as it is the difference
between the two coefficients of 𝑧 from fitting 𝑦 = 𝑎+𝑏𝑧 on the data with 𝑃 = 1
and 𝑃 = 0, respectively. More explicitly,
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𝔼[𝑦|𝑧 = 1, 𝑃 = 1] − 𝔼[𝑦|𝑧 = 0, 𝑃 = 1] = (𝛽0 + 𝛽1 + 𝛽2 + 𝛿) − (𝛽0 + 𝛽2 + 𝛿)
= 𝛽1 + 𝛿

𝔼[𝑦|𝑧 = 1, 𝑃 = 0] − 𝔼[𝑦|𝑧 = 0, 𝑃 = 0] = (𝛽0 + 𝛽1) − 𝛽0
= 𝛽1.

Subtracting these two equalities yields

DID = (𝛽1 + 𝛿) − 𝛽1 = 𝛿.

20.2.2 Difference-in-differences by matching
Alternatively, we can use propensity score matching to match each unit that was
observed before the treatment time to a unit in the same group that was observed
after. Then, we treat each pair as a single observation with the observed values
of 𝑦before and 𝑦after. With these new observations, we can obtain the DID
estimate by fitting the regression Equation 20.1.

In all cases, we have made a strong assumption that the changes in the outcomes
without the treatment effect would be the same in both New Jersey and Penn-
sylvania. We will discuss more about the assumptions for the DID estimate in
the next section.

20.3 Parallel trends assumption
From Equation 20.1, we define the potential changes as the difference between
the potential outcome, with or without the treatment, and the outcome observed
before applying the treatment.

𝑑1 = 𝑦1 − 𝑦before, 𝑑0 = 𝑦0 − 𝑦before,

where 𝑦1, 𝑦0 are the potential outcomes. In view of Equation 20.1, in order for
the coefficient 𝛿 to be a valid causal estimate, the dependent variable in the re-
gression must be independent of the treatment assignment, which is guaranteed
when

𝑑0 ⟂ 𝑧. (20.2)

This is referred to as parallel trends assumption, as it implies that the change in
a treated unit would be the same as that of a controlled unit had it not received
the treatment. We can show that the DID estimate is an unbiased estimate of
the ATT as follows:
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𝔼[𝑦 − 𝑦before|𝑧 = 1] − 𝔼[𝑦 − 𝑦before|𝑧 = 0]
= 𝔼[𝑦1 − 𝑦before|𝑧 = 1] − 𝔼[𝑦0 − 𝑦before|𝑧 = 0]
= 𝔼[𝑑1|𝑧 = 1] − 𝔼[𝑑0|𝑧 = 0]
= 𝔼[𝑑1|𝑧 = 1] − 𝔼[𝑑0|𝑧 = 1]
= 𝔼[𝑦1 − 𝑦0|𝑧 = 1]
= 𝔼[𝑦1|𝑧 = 1] − 𝔼[𝑦0|𝑧 = 1],

where we used Equation 20.2 to show the third equality. Two comments are in
order:

• If we instead have a stronger assumption: 𝑑1, 𝑑0 ⟂ 𝑧. Then ATT is the
same as ATE, in which case we can estimate both with DID.

• If 𝑦before ⟂ 𝑧 (which implies 𝔼[𝑦before|𝑧 = 1] = 𝔼[𝑦before|𝑧 = 0]), we can
instead assume 𝑦0 ⟂ 𝑧 and modify the proof to show that the DID estimate
is an unbiased estimate of the ATT (if 𝑦1, 𝑦0 ⟂ 𝑧, then the ATT is the
same as ATE).

With confounder covariates, however, this assumption might not be satisfied.
For example, in the 1992 survey, almost half of the fast food restaurants were
Burger King’s, and around 80% of them were from New Jersey; so if Burger
King was very responsive to the minimum wage raise compared to the other
fast food restaurants, the potential employments in New Jersey would be lower
than that in Pennsylvania.

Thus, we have to adjust for these confounder covariates, say 𝑥, in the ignorability
assumption.

𝑑1, 𝑑0 ⟂ 𝑧|𝑥.

With this assumption, we obtain the DID estimate by regressing on the con-
founders as well. In the employment example, we can adjust for the five fran-
chise indicators

fit_2 <- stan_glm((y_ft_employment_after - y_ft_employment_before) ~
d_nj + x_burgerking + x_kfc

+ x_roys + x_wendys + x_co_owned,
data=wage92,
seed=0, refresh=0)

print(fit_2, digit=2)

stan_glm
family: gaussian [identity]
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formula: (y_ft_employment_after - y_ft_employment_before) ~ d_nj + x_burgerking +
x_kfc + x_roys + x_wendys + x_co_owned

observations: 350
predictors: 7

------
Median MAD_SD

(Intercept) -3.22 26.83
d_nj 2.35 1.16
x_burgerking 1.69 26.74
x_kfc 1.87 26.76
x_roys -0.30 27.07
x_wendys 1.06 26.85
x_co_owned 0.36 1.10

Auxiliary parameter(s):
Median MAD_SD

sigma 8.73 0.34

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

Nonetheless, in this example, the DID estimate of 2.35 with standard error 1.16
is not noticably different that the previous one.

Note. For the reasons explained in Section 15.2.2, do not adjust for post-
treatment covariates.

20.3.1 Checking the parallel trends assumption
It is possible to check for the parallel trends assumption if the data was recorded
at multiple time points before the treatment took effect. If this is the case, there
are mainly three ways to check for the parallel trend assumptions.

1. Check the plot over time. We can compare the graphs of the average
outcomes between the treatment and control group over a period of time
leading up to when the treatment occurred. If the graphs are moving
apart or approaching each other, the parallel trend assumption might not
be satisfied.

2. Statistical test. To see whether the trends different between the treatment
and control groups, we can fit the following regression with an interaction
term on the data before the treatment occurred:

𝑦 = 𝛽0 + 𝛽1 ∗ Time+ 𝛽2 ∗ Time ∗ 𝑧 + 𝜀,

and perform a statistical test to see if 𝛽2 = 0, in which case it is unlikely that
the trends are different. On the other hand, if we reject 𝛽2 = 0, we still have

246



to look at the graphs and see if the difference in trends is visually small but
the test was performed with a large sample size, or if the outcomes vastly differ
only over a brief moment, outside of which the trends are very similar.

3. The placebo test. The idea is to treat some of untreated data as fake
treated data and see if our DID estimate is significant, even though there
should not be any effect. More precisely, we first remove the time period
that the treatment took effect. Then, we choose an earlier time period,
and let the outcomes over this period be the results of a fake treatment. If
the DID estimate with this fake treatment is significant, then the parallel
trends assumption might be violated.
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Chapter 21

Panel data

Panel data, or longitudinal data, is data that contains multiple observations of
each unit. As we can see from the method of difference-in-differences, under
certain assumptions, the temporal nature of the data can be exploit to extract
the treatment effect. Below are relevant variables in panel data analysis:

• 𝑡 = 1, 2,… , 𝑇 is the time.
• 𝑦𝑖𝑡 is unit 𝑖’s time-varying outcome.
• 𝑥𝑖𝑡 is unit 𝑖’s vector of time-varying predictors, including the treatment.
• 𝑢𝑖 is unit 𝑖’s vector of unobserved time-invariant effect.

Here, we impose that the unobserved individual effect is not changing over
time. For example, 𝑢𝑖 might be 𝑖’s health condition before receiving scheduled
treatments. The difference-in-differences setting is a special case of panel data
with 𝑇 = 2 and 𝑢𝑖 is the same for all units in each of the treatment and control
groups.

Throughout this chapter, we will use panel data of 545 observations of young
men from 1980 to 1987 from Vella and Verbeek (1998). The outcome (wage)
is the log of wage, and the predictors that we will use are: years of experience
(exper), whether the wage is set by collective bargaining (union) and the mar-
riage status (married). We will also use the unique identifier (nr) and the year
identified (year).

set.seed(0)
library(rstanarm)

wage97 <- read.csv("data/wage97.csv")
wage97 <- wage97[, c("nr", "year", "exper",

"union", "married", "wage")]

248



wage97$nr <- factor(wage97$nr)
wage97$year <- factor(wage97$year)

lookup <- c("yes" = 1, "no" = 0)
wage97$union <- lookup[wage97$union]
wage97$married <- lookup[wage97$married]

head(wage97)

nr year exper union married wage
1 13 1980 1 0 0 1.197540
2 13 1981 2 1 0 1.853060
3 13 1982 3 0 0 1.344462
4 13 1983 4 0 0 1.433213
5 13 1984 5 0 0 1.568125
6 13 1985 6 0 0 1.699891

Notice that Unit #13 had been observed once a year since 1980. To see what
kind of model we are looking for, we take a look at the wages of three people in
the dataset.

colors <- c("red", "blue", "green")
plot(1, type = "n", xlab = "Year", ylab = "Wage",

xlim = c(1980,1987), ylim = c(0.75, 2.5))

for (i in 1:3) {
points(1980:1987, wage97$wage[8*i+1:8*(i+1)],

pch = 16, col = colors[i])
}
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This suggests that simply fitting a regression on this data would be a big mistake,
since such model assumes the same level of wages for every young men. Instead,
we have to come up with a model that allows for the difference in wages.

21.1 Fixed effects model
We assume that the outcome is composed of the individual time-invariant effect
and time-specific treatment effect, resulting in the following model:

𝑦𝑖𝑡 = 𝛽𝑥𝑖𝑡 + 𝑢𝑖 + 𝜀𝑖𝑡, 𝜀𝑖𝑡 ∼ 𝑁(0, 𝜎). (21.1)

The vectors of coefficients 𝛽 is the same for all units and times, but the individual
effect 𝑢𝑖 varies across the units.

The inclusion of the fixed effect term 𝑢𝑖 means that we are controlling for any-
thing that does not change over time; this is where we exploit the panel structure
to control for unobserved confounders, given that they are constant over time.
After fitting the model, the confounder effects will be stored in 𝑢𝑖.

One way to obtain an estimate of 𝑢𝑖 is by adding an indicator variable that is
unique for each unit, but this would be computationally inefficient if we observe
a large number of units. Instead, we use a trick that will remove 𝑢𝑖 from the
equation. First, we compute

• ̄𝑦𝑖 the mean of User 𝑖’s time-varying outcomes,
• ̄𝑥𝑖 the mean of User 𝑖’s time-varying predictors.

Then, we subtract the variables in Equation 21.1 by their means. Since 𝑢𝑖 is
fixed over time, the mean of 𝑢𝑖 is 𝑢𝑖 itself.

𝑦𝑖𝑡 − ̄𝑦𝑖 = 𝛽(𝑥𝑖𝑡 − ̄𝑥𝑖) + (𝑢𝑖 − 𝑢𝑖) + (𝜀𝑖𝑡 − ̄𝜀𝑖)
= 𝛽(𝑥𝑖𝑡 − ̄𝑥𝑖) + (𝜀𝑖𝑡 − ̄𝜀𝑖).

Denoting ̈𝑦𝑖𝑡 = 𝑦𝑖𝑡 − ̄𝑦𝑖, ̈𝑥𝑖𝑡 = 𝑥𝑖𝑡 − ̄𝑥𝑖 and ̈𝜀𝑖𝑡 = 𝜀𝑖𝑡 − ̄𝜀𝑖, we obtain a new
regression equation:

̈𝑦𝑖𝑡 = 𝛽 ̈𝑥𝑖𝑡 + (𝜀𝑖𝑡 − ̄𝜀𝑖).

Thus, we can instead fit on the demeaned data to obtain the estimate of the
coefficients, and in particular, the average treatment effect.

Let us try this on the wage data. We can subtract the mean from each variable
by using the scale function with the scale argument set to FALSE.
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wage97$exper_c <- with(wage97, exper - ave(exper, nr))
wage97$union_c <- with(wage97, union - ave(union, nr))
wage97$married_c <- with(wage97, married - ave(married, nr))
wage97$wage_c <- with(wage97, wage - ave(wage, nr))

head(wage97[, c("nr", "year", "exper_c",
"union_c", "married_c", "wage_c")])

nr year exper_c union_c married_c wage_c
1 13 1980 -3.5 -0.125 0 -0.05811187
2 13 1981 -2.5 0.875 0 0.59740792
3 13 1982 -1.5 -0.125 0 0.08880961
4 13 1983 -0.5 -0.125 0 0.17756126
5 13 1984 0.5 -0.125 0 0.31247301
6 13 1985 1.5 -0.125 0 0.44423887

Now we can fit the regression model with e.g. stan_glm. However, the differ-
ences in the number of observations, predictors’ variances, etc. suggest that we
should assume heterogeneous standard errors across the units. We can fit such
model using stan_glmer from the rstanarm library. In the formula, we add (1
| nr), which means that we are varying the intercept (1) by the unit.

fit_1 <- stan_glmer(wage ~ married + union + exper
+ (1 | nr),
data=wage97, seed=0, refresh=0)

print(fit_1, digits=3)

stan_glmer
family: gaussian [identity]
formula: wage ~ married + union + exper + (1 | nr)
observations: 3115

------
Median MAD_SD

(Intercept) 1.241 0.027
married 0.080 0.020
union 0.102 0.022
exper 0.055 0.003

Auxiliary parameter(s):
Median MAD_SD

sigma 0.348 0.005

Error terms:
Groups Name Std.Dev.
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nr (Intercept) 0.3852
Residual 0.3485

Num. levels: nr 429

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

The model tells us that marriage increases the wage by 8% on average (since
the outcome is the log of the wage).

The intercept of each individual’s model is a sum of two components:

• The first component is the fixed effects which is the same for all units; this
is the value of intercept shown above,

• The second component is the random effects which varies from unit to
unit. To see the random effects of all units, we can use ranef on the fitted
model.

ranef(fit_1)$nr[1:5, ]

[1] -0.22613167 -0.01290594 0.17485998 0.26456645 -0.10256147

The actual intercept 𝑢𝑖 of each individual’s model can be obtained using coef
on the fitted model.

head(coef(fit_1)$nr)

(Intercept) married union exper
13 1.014496 0.08003359 0.1019362 0.05538296
17 1.227722 0.08003359 0.1019362 0.05538296
45 1.415488 0.08003359 0.1019362 0.05538296
110 1.505195 0.08003359 0.1019362 0.05538296
120 1.138067 0.08003359 0.1019362 0.05538296
126 1.621628 0.08003359 0.1019362 0.05538296

Notice that each intercept is equal to the sum of the fixed effects and random
effects above.

Let us take a look at the actual wage versus the predicted wage from the fixed
effects model. Overall, the predictions (the line plots) are close to the actual
wages.

colors <- c("red", "blue", "green")
plot(1, type = "n", xlab = "Year", ylab = "Wage",

xlim = c(1980,1987), ylim = c(0.75, 2.5))
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for (i in 1:3) {
points(1980:1987, wage97$wage[8*i+1:8*(i+1)],

pch = 16, col = colors[i])
lines(1980:1987, fit_1$fitted.values[8*i+1:8*(i+1)],

pch = 18, col = colors[i], type = "b")
}
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21.2 Time effects
In addition to the user’s effect, we can have a fixed effect at each time as well.

𝑦𝑖𝑡 = 𝛽𝑥𝑖𝑡 + 𝑢𝑖 + 𝑣𝑡 + 𝜀𝑖𝑡, 𝜀𝑖𝑡 ∼ 𝑁(0, 𝜎). (21.2)

This is applicable when the time is a counfounder that affects both the treatment
and the outcome. For example, due to cultural shift, the number of marriages
increases with time. And due to the inflation, the wage also increases with time.
The graphical model of our example is shown below:
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To fit the fixed effects model with stan_glmer, simply add (1 | year) to the
formula.

fit_2 <- stan_glmer(wage ~ married + union + exper
+ (1 | nr) + (1 | year),
data=wage97, seed=0, refresh=0)

print(fit_2, digits=3)

stan_glmer
family: gaussian [identity]
formula: wage ~ married + union + exper + (1 | nr) + (1 | year)
observations: 3115

------
Median MAD_SD

(Intercept) 1.673 0.124
married 0.074 0.020
union 0.108 0.022
exper -0.013 0.015

Auxiliary parameter(s):
Median MAD_SD

sigma 0.349 0.005
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Error terms:
Groups Name Std.Dev.
nr (Intercept) 0.3653
year (Intercept) 0.2202
Residual 0.3486

Num. levels: nr 429, year 8

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

With this new model, the average effect of marriage on wage decreases from 8%
to 7.4%, but it is still significant.

We can use ranef to inspect the random effects as before.

ranef(fit_2)$nr[1:5, ]

[1] -0.3381000 0.0525898 0.1198533 0.3938407 -0.1562601

We can look at the time’s random effects as well.

ranef(fit_2)$year[1:5, ]

[1] -0.26494327 -0.15934185 -0.09733085 -0.03082152 0.03349460

And we can see that the effect increases by the years.

21.3 Assumptions and Cautions
Ignorability. For the coefficient of the treatment ot be a valid estimate of the
treatment effect, we have to assume independent conditional to the grouping
variable—in this case the unit 𝑖—and pre-treatment covariates 𝑥. That is,

𝑦0, 𝑦1 ⟂ 𝑧|𝑖, 𝑥.

If the model has time effects, we have to condition on the time variable as well.

Confounders must be constant over time. The inclusion of the time-
invariant variable 𝑢𝑖 imposes that confounding must remain constant at all time.
Any unobserved confounders that are changing over time will not be detected
by the fixed effects model.

No reverse causality. The problem of assuming a wrong causal direction
usually comes up in panel data. For example, instead of marriage having an
effect on the wage, it might be the other way around, as people with more
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wages have more chance of getting married. As another example. when one
considers between the police spending and crime rate, the causal effect can go
both ways: higher crime rate can cause more police spending, or having more
police spending actually reduces the crime rate. Review of previous research is
a common way to find the right direction, as well as asking domain experts.
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Chapter 22

Synthetic control

In difference-in-differences, we saw that it is possible to estimate the treatment
effect if the treated and controlled units are similar before applying the treat-
ment. But more often than not, we might not find a controlled unit that ex-
actly matches the treated unit that, we have, especially when there are many
confounders to adjust for.

The idea of synthetic control is to make a fake unit that resembles the pre-
treatment treated unit by combining the existing controlled units.

22.1 Example: study of the effect of taxation on
cigarette consumption

The method of synthetic control was demonstrated in a study of the effect
of cigarette taxation on its consumption (Abadie, Diamond, and Hainmueller
2010). One could argue that imposing the tax would decrease cigarette con-
sumption. On the other hand, since cigarettes are addictive, the consumption
would not decrease by much.

In particular, Abadie, Diamond, and Hainmueller studied the effect of Proposi-
tion 99 which imposes several restrictions on cigarette sales in California since
1988: a 25-cent tax per cigarette pack, a ban on cigarette vending machines in
public areas accessible by juveniles, and a ban on the sale of single cigarettes.

To study the effect of Proposition 99 using synthetic control, the authors col-
lected the data of cigarette consumption in California and other states, before
and after imposing the statute. The data prop99.csv contains the information
regarding cigarette sales and taxes across all states from 1970 to 2000, on which
we shall perform a couple of preprocessing steps:

1. Add a column that represents states by numbers.
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2. There were several states that imposed similar cigarette restrictions. These
states do not represent those in the control group, so we have to remove
them.

3. There are several information regarding Proposition 99 in the
SubMeasureDesc column, but we will only use the cigarette consumption
as the outcome.

library(Synth)

# Load and preprocess the cigarette consumption data
prop99 <- read.csv("data/prop99.csv")

# Add a column that represents states by numbers
prop99$state <- as.numeric(factor(prop99$LocationDesc))

# Remove states that imposed similar cigarette restrictions
bad_states <- c('Massachusetts', 'Arizona', 'Oregon',

'Florida', 'Alaska', 'Hawaii', 'Maryland',
'Michigan', 'New Jersey', 'New York',
'Washington', 'District of Columbia')

prop99 <- prop99[
prop99$SubMeasureDesc=="Cigarette Consumption (Pack Sales Per Capita)" &
!(prop99$LocationDesc %in% bad_states),
]

prop99 <- prop99[, c("state", "LocationDesc", "Year", "Data_Value")]

head(prop99)

state LocationDesc Year Data_Value
2 1 Alabama 2014 61.7
20 4 Arkansas 2014 54.4
26 5 California 2014 22.7
32 6 Colorado 2014 36.7
38 7 Connecticut 2014 30.1
44 8 Delaware 2014 71.2

We also need additional information about these states in order to “match” pre-
intervention California with the other states. We will use the smoking.rda data
which contains cigarette sales cigsale , average log of income lnincome , beer
sales beer , proportion of 15-24 age group in the population age15to24 , and
the cigarette’s retail price retprice.

258



# Load the state data
load("data/smoking.rda")

head(smoking)

state year cigsale lnincome beer age15to24 retprice
1 1 1970 89.8 NA NA 0.1788618 39.6
2 1 1971 95.4 NA NA 0.1799278 42.7
3 1 1972 101.1 9.498476 NA 0.1809939 42.3
4 1 1973 102.9 9.550107 NA 0.1820599 42.1
5 1 1974 108.2 9.537163 NA 0.1831260 43.1
6 1 1975 111.7 9.540031 NA 0.1841921 46.6

Now we join these two dataframes by the state numbers and the years. We also
make a new variable allstates that stores the remaining 39 states.

# Join the two dataframes
colnames(smoking)[2] <- "Year"
prop99_full <- merge(prop99, smoking, by=c("state", "Year"))

# Obtain the list of states
allstates <- unique(prop99_full$LocationDesc)

head(prop99_full)

state Year LocationDesc Data_Value cigsale lnincome beer age15to24 retprice
1 1 1970 Alabama 89.8 89.8 NA NA 0.1788618 39.6
2 1 1971 Alabama 95.4 95.4 NA NA 0.1799278 42.7
3 1 1972 Alabama 101.1 101.1 9.498476 NA 0.1809939 42.3
4 1 1973 Alabama 102.9 102.9 9.550107 NA 0.1820599 42.1
5 1 1974 Alabama 108.2 108.2 9.537163 NA 0.1831260 43.1
6 1 1975 Alabama 111.7 111.7 9.540031 NA 0.1841921 46.6

Let us visualize and compare the cigarette consumption in California and Col-
orado. We also plot a vertical line that splits between the pre-intervention
period (1970-1987) and the post-intervention period (1988-2000).

ca_data <- prop99[prop99$LocationDesc == "California", ]
co_data <- prop99[prop99$LocationDesc == "Colorado", ]

plot(ca_data$Year, ca_data$Data_Value, type = "l",
ylab = "Per-capita cigarette sales (packs)",
xlab = "Year", ylim = c(20, 140),
col = "blue", lwd = 3)
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lines(co_data$Year, co_data$Data_Value, lty = 2,
col = "red", lwd = 3)

abline(v = 1988, lty = 3, lwd = 2)
legend("topright",

legend = c("California",
"Colorado",
"Proposition 99"),

col = c("blue", "red", "black"),
lty = 1:3, lwd = 3)
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The trends of the cigarette consumption between these two states are similar
up until 1988. After that, there is a gap which might be a result of cigarette
taxation in California.

22.2 The method of synthetic control
We now explain the method of constructing a new controlled unit that has
similar features to those of the treated unit before the intervention. Let us start
with a simple case of only one covariate 𝑥. Here, we introduce some notations:

• Suppose that there are 𝐽 units: Unit 1 is the treated unit and unit 2,… , 𝐽
are the controlled units.

• Suppose that the outcomes were observed at time 𝑡 = 1,… , 𝑇 , and the
effect of the intervention occurred at time 𝑇0 < 𝑇 .

• 𝑦𝑗𝑡 is the outcome of 𝑗-th unit at time 𝑡.
• 𝑥𝑗𝑡 is the covariate of 𝑗-th unit at time 𝑡.
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The idea is to construct Unit 1’s synthetic covariate ̂𝑥1𝑡 as a linear combination
of the controlled units’ covariates:

̂𝑥1𝑡 = 𝑤2𝑥2𝑡 +…+𝑤𝐽𝑥𝐽𝑡; 𝑡 = 1,… , 𝑇

where 𝑤2,… ,𝑤𝐽 are positive weights that sum to one. Our goal now is to find
the combination of weights so that Unit 1’s synthetic covariate ̂𝑥1𝑡 is “close” to
its actual covariate 𝑥1𝑡; this problem can be cast as a linear regression of 𝑥1𝑡 on
𝑥2𝑡,… , 𝑥𝐽𝑡, with 𝑤2,… ,𝑤𝐽 as the coefficients. The diagram below illustrates
our regression problem:

Suppose that we have an additional covariate 𝑧, we can stack them next to 𝑥 as
follows:
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Now suppose that we have 𝑚 covariates: 𝑥1
𝑗𝑡,… , 𝑥𝑚

𝑗𝑡 , which give rise to a syn-
thetic covariate ̂𝑥𝑘

1𝑡 = ∑𝐽
𝑗=2 𝑤𝑗𝑥𝑘

𝑗𝑡 for 𝑘 = 1,… ,𝑚. We can cast the linear
regression as minimizing the least-squares objective with respect to 𝑤2,… ,𝑤𝐽 .

min
𝑤2,…,𝑤𝐽

𝑚
∑
𝑘=1

𝑇
∑
𝑡=1

(𝑥𝑘
1𝑡 −

𝐽
∑
𝑗=2

𝑤𝑗𝑥𝑘
𝑗𝑡)

2

subject to 𝑤2 +…+𝑤𝐽 = 1.

However, some covariates might be more important than the others in predicting
the outcome; for example, one of our covariates is the cigarette sales, which
should be more predictive of the cigarette consumption than the beer sales. We
thus multiply the term associated with the 𝑘-th covariate by a positive weight
𝑣𝑘 to reflect its relative importance:

min
𝑤2,…,𝑤𝐽

𝑚
∑
𝑘=1

𝑇
∑
𝑡=1

𝑣𝑘 (𝑥𝑘
1𝑡 −

𝐽
∑
𝑗=2

𝑤𝑗𝑥𝑘
𝑗𝑡)

2

(1)

subject to 𝑤2 +…+𝑤𝐽 = 1. (22.1)

We will discuss on how to choose 𝑣1,… , 𝑣𝑚 in a moment, but let us assume for
now that these weights are known.
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Solving (1) yields a solution �̂�2,… , �̂�𝐽 . We then use this solution to obtain
Unit 1’s synthetic outcomes ̂𝑦1𝑡 as follows:

̂𝑦1𝑡 = �̂�2𝑦2𝑡 +…+ �̂�𝐽𝑦𝐽𝑡, 𝑡 = 1,… , 𝑇 .. (2)

The diagram below illustrates the relationship between Unit 1’s synthetic and
actual outcomes.

We can now continue our discussion on the choice of the weights 𝑣1,… , 𝑣𝑚. Since
the pre-intervention outcomes of the synthetic control should be similar to those
of Unit 1, we typically choose 𝑣1,… , 𝑣𝑚 that minimize the corresponding least-
squares objective:

min
𝑣1,…,𝑣𝑚

𝑇0−1
∑
𝑡=1

(𝑦1𝑡 −
𝐽
∑
𝑗=2

�̂�𝑗𝑦𝑗𝑡)
2

(3)

where �̂�2,… , �̂�𝐽 solve (1). (22.2)

Notice that the sum only consists of the pre-intervention data. After solving (3)
for 𝑣1,… , 𝑣𝑚, we obtain the associated �̂�2,… , �̂�𝐽—inserting these into (2) yields
our estimate of Unit 1’s post-intervention counterfactual outcome ̂𝑦1𝑡, 𝑡 ≥ 𝑇0.
We can then estimate the causal effect using:

̂𝜏1𝑡 = 𝑦1𝑡 − ̂𝑦1𝑡, 𝑡 = 𝑇0,… , 𝑇 . (4)
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22.3 Synthetic control in R using the Synth
package

Now we continue our example of synthetic control in R. We already have the
preprocessed dataframe prop99_full which contains both the covariates and
the outcomes over 39 states. We can then use the dataprep function provided
in the Synth package to split the data into dataframes of the covariates and the
outcomes for synthetic control. For simple usage, we define a wrapper function
named prepare_data that only asks for the name of the treated unit. Full
descriptions of the parameters of dataprep can be found here.

# Prepare data for synthetic control of a specified state
prepare_data <- function(state) {

return(
dataprep(

foo = prop99_full,
predictors = c("cigsale", "lnincome", "beer", "age15to24"),
predictors.op = "mean",
time.predictors.prior = 1970:1987,
dependent = "Data_Value",
unit.variable = "state",
unit.names.variable = "LocationDesc",
time.variable = "Year",
treatment.identifier = state,
controls.identifier = allstates[!allstates == state],
time.optimize.ssr = 1970:1987,
time.plot = 1970:2000

)
)

}

prop99_prep <- prepare_data("California")

To perform the method of synthetic control, we simply call the synth function
on the prepared data.

# Perform synthetic control
prop99_synth <- synth(data.prep.obj = prop99_prep)

After that, we call synth.tab on the output and the actual data to create tables
summarizing the optimal weights ̂𝑣1,… , ̂𝑣𝑚 and �̂�2,… , �̂�𝐽 and the correspond-
ing minimum values of the lease-squares (1) and (3).
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# Table summarizing the result
prop99_tab <- synth.tab(prop99_synth, prop99_prep)

prop99_tab$tab.w

w.weights unit.names unit.numbers
1 0.000 Alabama 1
4 0.000 Georgia 11
6 0.000 Idaho 13
7 0.000 Illinois 14
8 0.000 Indiana 15
11 0.000 Iowa 16
13 0.000 Kansas 17
14 0.000 Kentucky 18
15 0.000 Louisiana 19
16 0.002 Maine 20
17 0.000 Minnesota 24
18 0.000 Mississippi 25
19 0.000 Missouri 26
20 0.000 Montana 27
24 0.000 Nebraska 28
25 0.000 Nevada 29
26 0.000 New Hampshire 30
27 0.429 New Mexico 32
28 0.508 North Carolina 34
29 0.000 North Dakota 35
30 0.000 Ohio 36
32 0.000 Oklahoma 37
34 0.061 Pennsylvania 39
35 0.000 Arkansas 4
36 0.000 Colorado 6
37 0.000 Connecticut 7
39 0.000 Delaware 8

We can see that North Carolina is the most representative state in the synthetic
control, while New Mexico is the second most.

Unfortunately, synth only outputs the weights and the least-squares minimum.
To compute the synthetic outcome (2), we have to multiply the controlled’s
outcome matrix, which is stored in the prepared data’s Y0plot column, and the
vector of optimal weights, stored in the result’s solution.w column.

print(prop99_prep$Y0plot[1:5, 1:8])

1 11 13 14 15 16 17 18
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1970 89.8 100.3 124.8 120.0 155.0 109.9 102.4 124.8
1971 95.4 104.1 125.5 117.6 161.1 115.7 108.5 125.6
1972 101.1 103.9 134.3 110.8 156.3 117.0 126.1 126.6
1973 102.9 108.0 137.9 109.3 154.7 119.8 121.8 124.4
1974 108.2 109.7 132.8 112.4 151.3 123.7 125.6 131.9

print(prop99_synth$solution.w[1:8])

[1] 2.518675e-06 8.593394e-06 4.654868e-06 3.732791e-06 5.340892e-08
[6] 1.424996e-05 1.815872e-06 1.289167e-06

# Calculate the outcomes of the synthetic control
synth_control <- prop99_prep$Y0plot%*%prop99_synth$solution.w

tail(synth_control)

w.weight
1995 91.60042
1996 89.35529
1997 89.43415
1998 86.59770
1999 86.62141
2000 78.64532

To plot both the actual outcome and the synthetic outcome, we can use the
path.plot function. Here, we also plot a vertical line that indicates the inter-
vention (the enactment of Proposition 99) in 1988.

# Plot the outcomes of the treated unit and the synthetic control
path.plot(prop99_synth, prop99_prep,

tr.intake = 1988,
Ylab = "Per-capita cigarette sales (packs)")
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To compute an estimate of the treatment effect using (4), we subtract the
treated’s outcome, stored in the prepared data’s Y1plot column, by the syn-
thetic control’s outcome.

# Calculate an estimate of the treatment effect
tax_effects <- prop99_prep$Y1plot - synth_control

tail(tax_effects)

5
1995 -35.20042
1996 -34.85529
1997 -35.63415
1998 -34.29770
1999 -39.42141
2000 -37.04532

We can also plot our estimate of the treatment effect over time using gaps.plot
function.

gaps.plot(prop99_synth, prop99_prep,
tr.intake = 1988,
Main = "Treated outcome - Synthetic outcome",
Ylab = "Estimated taxation effect (packs per capita)")
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22.4 Permutation test
Without a frame of reference, it is not clear if our estimate displayed above is
statistically significant. To show this, we can use a permutation test, whose
hypotheses are:

𝐻0 ∶ The effects of treatment on the treated and the controlled are the same.
𝐻1 ∶ The effect of treatment on the treated is less than that on the controlled.

To perform the test, we follow the same procedure as above for all other units to
obtain estimates of the placebo effects and see if the estimate of the treatment
effect is sufficiently smaller than that of the placebo effects. In addition, we
only consider units whose pre-intervention synthetic outcomes are close to the
actual outcomes in terms of the mean-squared error (MSE):

MSE𝑗 =
1
𝑇0

𝑇0

∑
𝑡=1

(𝑦𝑗𝑡 − ̂𝑦𝑗𝑡)2.

In particular, we discard any state whose pre-intervention error is greater than
1600.

prop99_placebos <- data.frame(row.names=1970:2000)
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for (state in allstates) {
# Estimate the treatment effect for the state
prop99_prep <- prepare_data(state)
prop99_synth <- synth(data.prep.obj = prop99_prep)
synth_control <- prop99_prep$Y0plot%*%prop99_synth$solution.w
tax_effects <- prop99_prep$Y1plot - synth_control

# Only consider state with small pre-intervention error
if(mean(tax_effects[1:18]^2) < 1600) {

prop99_placebos[, state] <- tax_effects[, 1]
}

}

To visualize the permutation test, we plot the estimate of treatment effect and
placebo effects.

plot(1970:2000, prop99_placebos$California, xlab = "Year",
ylab = "Estimated taxation effect (packs per capita)",
ylim = c(-80, 100), type = "l", lwd = 3)

for (state in colnames(prop99_placebos)) {
lines(1970:2000, prop99_placebos[, state], col='#00000050')

}
abline(a = 0, b = 0, lty = 2, lwd = 2)
abline(v = 1988, lty = 3, lwd = 2)
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The good thing about this test is that the 𝑝-value—the proportion of the con-
trolled units whose estimates of the placebo effects are smaller than the treated
unit’s synthetic control estimate—can be easily computed. For example, let us
compute the 𝑝-value of the estimate in year 2000.

effect2000 <- prop99_placebos["2000", ]
p_value <- mean(effect2000 < effect2000$California)

print(p_value)

[1] 0.04166667
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Chapter 23

Use cases of causal
inference in industry

This section is for keeping track of blog articles and papers related to use cases of
causal inference in industry. Many of these methods use meta-learners (Künzel
et al. 2019) or doubly-robust estimators (Funk et al. 2011) which are not
covered in this course.

23.1 Matching
• At Uber, researchers studied the effect of using Uber Eats, in addition to

Uber Rides, on the amount spent on Uber Rides. They used propensity
score matching with 100+ covariates to match each user who used both
Uber Eats and Uber Rides to a user who only used Uber Rides. Their
results suggest that using UberEats drives up spending on Uber Rides
(Python tutorial).

23.2 Instrumental variables
• Researchers at Twitch studied the effect of number of friends on the user’s

likelihood to return to the site. Their instrumental variable is the random
assignment of receiving a prompt to add more friends (Forter 2017).

• Researchers at Roblox studied the impact of the Avatar Shop on the com-
munity engagement. Their instrumental variable is the random assign-
ment of getting a recommendation for items in the Avatar Shop (Kharel
2021).

• Farre-Mensa, Hegde, and Ljungqvist (2017) studied the impact of having
patents on a startup’s subsequent growth. The judges are the examiners of
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the patents, with different levels of leniency, and the instrumental variable
is the random assignment of judges to the patent applications.

• Researchers at TripAdvisor studied the effect of being a membership on
user engagement. Since it is not possible to force users to comply and be-
come members, they instead used a instrumental variable design in which
a randomized group of users were provided with a single-click sign-up but-
ton, which was much easier than the previous sign-up process. In this
study, the instrumental variable was whether the user was offered the
easier sign-up option (Python tutorial).

23.3 Difference-in-differences
• At Spotify, researchers studied the treatment effects of adopting a stream-

ing service on the total music consumption. The study was performed
using difference-in-differences on a unique panel data that contains
individual-level music consumption. Since the sampled consumers may
not be representative of the larger population of potential adopters, they
instead studied local average treatment effects (LATE) among those
consumer segments who adopt streaming (Datta, Knox, and Bronnenberg
2018).

23.4 Panel data
• Researchers at Uber studied the impact of increased pricing during high

demand on the supply of Uber rides. They fitted a fixed effect model on
panel data of drivers’ trips, using the hourly fare multiplier (depending of
the supply and demand) as the treatment variable, an indicator of whether
the trip was the driver’s last one of the session as the outcome variable,
and individual driver, day of week, hour of day, and region of city as
fixed effects. The results of the model suggest that a surge in hourly fares
significantly increases the supply of rides on the Uber platform (Chen
2016).

23.5 Synthetic control
• Researchers at Spotify proposed Bayesian structural time-series model

(Brodersen et al. 2015) to constructs a counterfactual artist popularity
outcome using a set of synthetic controls. Their findings suggest that re-
leasing a new track has a positive impact on the popularity of other tracks
by the same artist, and other related and competing artists also benefit
from a new track release (Mehrotra, Bhattacharya, and Lalmas 2020).
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Part IV

Conformal prediction
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In the remaining part of the course, we shall focus on models’ predictions with
uncertainties. More precisely, given a predictive model and a new data point,
our goal is to construct an interval that has a high probability of containing the
outcome associated with the data point. To do this, we will use conformal pre-
diction, a frequentist method of constructing a prediction interval that relies on
minimal assumption on the data distribution. In a sense, conformal prediction
is an exact opposite of predictive Bayesian inference, which heavily relies on dis-
tributional assumptions of the model’s parameters (through the prior) and that
of the data (through the likelihood). Of course, if the data distribution exactly
matched our assumptions, the posterior predictive distribution would give us
an accurate prediction interval. On the other hand, if our Bayesian model was
misspecified, then the conformal prediction would give us a better prediction
interval.

In the following chapters, we will cover fundamental ideas of conformal predic-
tion in the context of regression and classification. We will discuss its computa-
tional issue and, introduce a couple of methods that are designed to solve this
issue.
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Chapter 24

Full & split conformal
prediction

There are many situations where a wrong prediction can lead to costly conse-
quences. For example, a wrong prediction on a patient’s health condition after
receiving the treatment could lead to a fatal outcome. Thus it is important to
understand the reliability and uncertainty of our predictions.

In the first few chapters, we have talked about Bayesian regression where we used
the posterior predictive distribution to measure the uncertainty. One downside
of such method is the need to specify the distribution that generates the data
in the form of the likelihood. In this chapter, we introduce a method with
minimal distributional assumptions to estimate prediction intervals that exploit
the exchangeability of the data points.

24.1 Review: quantile
Let us first review the concept of quantile. Given a random variable 𝑋 with
continuous density, the quantile function Q(𝛽;𝑋) is the smallest value 𝑥 of 𝑋
such that Pr[𝑋 ≤ 𝑥] = 𝛽. But if 𝑋 is discrete or its density is not continuous,
such 𝑥 might not exist, so we have to relax the definition a bit. More precisely,
the quantile function is:

Quantile(𝛽,𝑋) = inf{𝑥 ∶ Pr[𝑥 ≤ 𝑋] ≥ 𝛽}.

Suppose that we observe data 𝑥 = (𝑥1,… , 𝑥𝑛), we can define the empirical
quantile function as follows:
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Quantile(𝛽, 𝑥) = min{𝑥𝑖 ∶
#{𝑗 ∶ 𝑥𝑗 ≤ 𝑥𝑖}

𝑛 ≥ 𝛽} . (24.1)

In other words, one can compute the quantile by sorting the observed values in
ascending order and finding 𝑥𝑖 such that the proportion of values less than or
equal to 𝑥𝑖 is just above 𝛽.
To compute quantiles in R, we can use the quantile function. Below is an
example of calculating Quantile(0.1, 𝑥) where 𝑥 is a sample from the standard
normal distribution.

set.seed(0)

x <- rnorm(1000)
q <- quantile(x, 0.1)

print(q)

10%
-1.28896

When plotting a histogram of this data, the area associated with the values
smaller than the quantile should take up approximately 10% of the total area.
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24.2 Quantile Lemma
Exchangeability. Our method for constructing prediction intervals relies on
the main assumption that the random variables of interest are exchangeable,
that is, the joint distribution of the random variables 𝑅1,… ,𝑅𝑛 does not change
upon any permutation. Thus one must be careful and check whether the data
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at hand satisfies this assumption. For example, data points that were generated
from a distribution that shifts over time are not exchangeable.

Suppose that 𝑅1,… ,𝑅𝑛, together with a new variable 𝑅new are exchangeable,
then the following quantile lemma tells us that it is possible to know something
about 𝑅new in relation to 𝑅1,… ,𝑅𝑛 without knowing its underlying probability
distribution. The lower bound, which is a standard result in conformal predic-
tion, is due to Vovk, Gammerman, and Shafer (2005) and the upper bound is
due to Lei et al. (2018).

Lemma 24.1 (Quantile Lemma). Denote 𝑅1∶𝑛 = {𝑅1,… ,𝑅𝑛}. If
𝑅1,… ,𝑅𝑛, 𝑅new are exchangeable, then for any 𝛽 ∈ (0, 1),

Pr [𝑅new ≤ Quantile(𝛽,𝑅1∶𝑛 ∪ {∞})] ≥ 𝛽. (24.2)

If in addition the probabilities of ties are zero i.e. Pr[𝑅𝑖 = 𝑅𝑗] = 0 for all 𝑖 ≠ 𝑗,
then we have an upper bound:

Pr [𝑅new ≤ Quantile(𝛽,𝑅1∶𝑛 ∪ {∞})] ≤ 𝛽 + 1
𝑛 + 1. (24.3)

Proof. We go over the proof in five steps.

1. Let 𝑞 = Quantile(𝛽,𝑅1∶𝑛 ∪ {∞}). If we modify the data 𝑅1∶𝑛 ∪ {∞}
by moving ∞ to any other value larger than 𝑞, the 𝛽-quantile is still
unchanged. Specifically, we move ∞ to 𝑅new so that

𝑅new > Quantile(𝛽,𝑅1∶𝑛 ∪ {∞}) ⟺ 𝑅new > Quantile(𝛽,𝑅1∶𝑛 ∪ {𝑅new}),

which is equivalent to

𝑅new ≤ Quantile(𝛽,𝑅1∶𝑛 ∪ {∞}) ⟺ 𝑅new ≤ Quantile(𝛽,𝑅1∶𝑛 ∪ {𝑅new}).

2. From the definition of empirical quantile (Equation 24.1),

𝑅new ≤ Quantile(𝛽,𝑅1∶𝑛 ∪ {𝑅new}) ⟺
#{𝑗 ∶ 𝑅𝑗 ≤ 𝑅new}

𝑛 + 1 ≤ 𝛽
⟺ rank(𝑅new) ≤ ⌈𝛽(𝑛 + 1)⌉.

3. Let us detour a bit and consider Pr[rank(𝑅new) = 𝑟] for any 𝑟 ∈ {1,… , 𝑛+
1}. With 𝐼 = {1,… , 𝑛, new}, we have
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∑
𝑖∈𝐼

Pr[rank(𝑅𝑖) = 𝑟] ≥ Pr[rank(𝑅𝑖) = 𝑟 for some 𝑖 ∈ 𝐼] = 1. (24.4)

By exchangeability, Pr[rank(𝑅𝑖) = 𝑟] is the same for all 𝑖 ∈ 𝐼 , so Equa-
tion 24.4 implies Pr[rank(𝑅new) = 𝑟] ≥ 1

𝑛+1 for all 𝑟.
4. Continuing from Step 2., we obtain the lower bound in Equation 24.2:

Pr [rank(𝑅new) ≤ ⌈𝛽(𝑛 + 1)⌉] =
⌈𝛽(𝑛+1)⌉
∑
𝑟=1

Pr[rank(𝑅new) = 𝑟]

≥ ⌈𝛽(𝑛 + 1)⌉
𝑛 + 1

≥ 𝛽.

5. If the probabilities of ties are zero, then the distribution of the rank of
𝑅new is exactly Uniform{1,… , 𝑛 + 1}, from which we can compute the
exact probability and obtain the upper bound in Equation 24.3:

Pr [rank(𝑅new) ≤ ⌈𝛽(𝑛 + 1)⌉] = ⌈𝛽(𝑛 + 1)⌉
𝑛 + 1 ≤ 𝛽 + 1

𝑛 + 1.

24.3 Full conformal prediction
The main idea of constructing the prediction intervals is to let 𝑅1,… ,𝑅𝑛, 𝑅new
be a “non-conformity score” of our data points (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), (𝑥new, ?),
from which we use the quantile lemma to find the prediction intervals of the
outcome associated with 𝑥new, say 𝑦new.

Let us consider the problem of predicting a child’s IQ score from the mother’s
education, IQ score, years of employment and age. We load the KidIQ dataset
and make a new hypothetic data point where the child IQ has not been yet
observed.

kidiq <- read.csv("data/kidiq.csv")

n <- nrow(kidiq)
new_data <- data.frame(kid_score = NA,

mom_hs = 0,
mom_iq = 90,
mom_work = 1,
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mom_age = 20)

head(kidiq)

kid_score mom_hs mom_iq mom_work mom_age
1 65 1 121.11753 4 27
2 98 1 89.36188 4 25
3 85 1 115.44316 4 27
4 83 1 99.44964 3 25
5 115 1 92.74571 4 27
6 98 0 107.90184 1 18

Our goal is to construct a 95% prediction interval of the child’s IQ. Here, we
introduce our first method, namely the full conformal prediction (Vovk, Gam-
merman, and Shafer 2005) which utilizes the quantile lemma to obtain a predic-
tion inverval with any model of choice (for example, a linear regression model).
There are mainly two variants of full conformal predictions.

24.3.1 Deleted full conformal prediction
Let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data and (𝑥new, ?) be a new
data point. We can compute the prediction intervals for the outcome 𝑦new
associated with 𝑥new as follows:

For each possible value of 𝑦
1. Add a new point (𝑥new, 𝑦) to the dataset.

2. For each 𝑖 ∈ {1,… , 𝑛, new},
2.1. Fit our predictive model on all but the 𝑖-th data point: 𝒟1∶𝑛 ∪
{(𝑥new, 𝑦)} − {(𝑥𝑖, 𝑦𝑖)}. Let ̂𝜇𝑦

−𝑖 be the fitted model.

2.2. Compute the non-conformity score 𝑅𝑦
𝑖 = |𝑦𝑖 − ̂𝜇𝑦

−𝑖(𝑥𝑖)|.
3. Sort 𝑅𝑦

1 ,… ,𝑅𝑦
𝑛 in increasing order: 𝑅𝑦

(1),… ,𝑅𝑦
(𝑛).

4. Let 𝑘 = ⌈𝛽(𝑛 + 1)⌉. We keep 𝑦 if 𝑅𝑦
new ≤ 𝑅𝑦

(𝑘) and discard it otherwise.

After we are done with all 𝑦, our prediction interval 𝐶𝛽(𝑥new) consists of the
values of 𝑦 that we keep. In other words, 𝐶𝛽(𝑥new) = {𝑦 ∶ 𝑅𝑦

new ≤ 𝑅𝑦
(𝑘)}.

𝐶𝛽(𝑥new) being a 𝛽-prediction interval is a simple consequence of the quan-
tile lemma: let 𝑦new be the actual outcome associated with 𝑥new. Assuming
that (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), (𝑥new, 𝑦new) are exchangeable, it directly follows from
the quantile lemma that 𝐶𝛽(𝑥new) is a 𝛽-prediction interval: since 𝑅𝑦new

(𝑘) is the
𝛽-quantile of 𝑅𝑦new

(1) ,… ,𝑅𝑦new
(𝑛) (which are also exchangeable by their symmetric

contruction), it follows from Equation 24.2 that
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Pr[𝑦new ∈ 𝐶𝛽(𝑥new)] = Pr [𝑅𝑦newnew ≤ 𝑅𝑦new
(𝑘) ] ≥ 𝛽.

Below is an implementation of the procedure on the KidIQ data. Here, we
assume that the possible values of IQ range from 1 to 200. To speed up the
process, we convert the dataframe into a matrix and fit linear regression using
a bare bone .lm.fit instead.

kidiq_mat <- as.matrix(kidiq)
kidiq_mat <- rbind(kidiq_mat, as.matrix(new_data))
X <- kidiq_mat[, -1]
X <- cbind(rep(1, nrow(X)), X)
Y <- kidiq_mat[, 1]

beta <- 0.95
k <- ceiling(beta * (n+1))

Rnew <- rep(NA, 200)
Rk <- rep(NA, 200)

for (y in 1:200) {
Y[n+1] <- y
R <- rep(NA, n+1)

for (i in 1:(n+1)) {
model <- .lm.fit(X[-i, ], Y[-i])
yhat <- X[i, ] %*% coef(model)
R[i] <- abs(Y[i] - yhat)

}

Rnew[y] <- R[n+1]
Rk[y] <- sort(R[1:n])[k]

}

Let us plot 𝑅𝑦
new and 𝑅𝑦

𝑘 in order to find a prediction interval of 𝑦.

plot(1:200, Rnew, type = "l", lwd = 2, col = "blue",
xlab = "y", ylab = "Score")

lines(1:200, Rk, lwd = 2, lty = 2, col = "red")
legend("topright", legend=c("Rnew", "0.95-quantile"),

col=c("blue", "red"), lty=1:2)
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The prediction interval consists of all 𝑦’s whose scores are below the 𝛽-quantile.
We can also compute the upper and lower bound of the interval directly.

which_y_conform <- which(Rnew < Rk)
last <- length(which_y_conform)

lower <- which_y_conform[1]
upper <- which_y_conform[last]
cat("Prediction interval: [", lower, ",", upper, "]")

Prediction interval: [ 40 , 112 ]

To see how well the prediction interval covers the data points, we plot the
data points that have similar characteristics as those of the new data point.
Specifically, we take the data points consisting of children whose mothers were
in the 16-24 age group, never graduated from high school (mom_hs = 0) and
had been working for one year (mom_work = 1).

kidiq_subset <- kidiq[kidiq$mom_hs == 0 &
kidiq$mom_work == 1 &
abs(kidiq$mom_age - 20) < 5,]

plot(kid_score ~ mom_iq, data = kidiq_subset,
ylab = "Child's IQ", xlab = "Mother's IQ",
ylim = c(38, 113), pch = 19)

arrows(x0 = new_data$mom_iq, y0 = lower,
x1 = new_data$mom_iq, y1 = upper,
code = 3, angle = 90, length = 0.1)
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The plot indicates that the interval has sufficient coverage over the data points.

24.3.2 Ordinary full conformal prediction
This variant of full conformal prediction fits on all data only once for each value
of 𝑦. Thus it is a lot faster to run compared to the deleted variant.

Let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data and (𝑥new, ?) be a new
data point.

For each possible value of 𝑦
1. Add a new point (𝑥new, 𝑦) to the dataset.

2. Fit our predictive model on 𝒟1∶𝑛 ∪{(𝑥new, 𝑦)}. Let ̂𝜇𝑦 be the fitted model.

3. For each 𝑖 ∈ {1,… , 𝑛, new}, compute the non-conformity score 𝑅𝑦
𝑖 = |𝑦𝑖 −

̂𝜇𝑦(𝑥𝑖)|.
4. Sort 𝑅𝑦

1 ,… ,𝑅𝑦
𝑛 in increasing order: 𝑅𝑦

(1),… ,𝑅𝑦
(𝑛).

5. Let 𝑘 = ⌈𝛽(𝑛 + 1)⌉. We keep 𝑦 if 𝑅𝑦
new ≤ 𝑅𝑦

(𝑘) and discard it otherwise.

After we are done with all 𝑦, our prediction interval 𝐶𝛽(𝑥new) consists of the
values of 𝑦 that we keep. In other words, 𝐶𝛽(𝑥new) = {𝑦 ∶ 𝑅𝑦

new ≤ 𝑅𝑦
(𝑘)}.

beta <- 0.95
k <- as.integer(beta * (n+1))

Rnew <- rep(NA, 200)
Rk <- rep(NA, 200)

for (y in 1:200) {
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new_data[, "kid_score"] <- y

model <- lm(kid_score ~ ., data = rbind(kidiq, new_data))
R <- abs(residuals(model))

Rnew[y] <- R[n+1]
Rk[y] <- sort(R[1:n])[k]

}

From this, let us compute the prediction interval.

which_y_conform <- which(Rnew < Rk)
last <- length(which_y_conform)

lower <- which_y_conform[1]
upper <- which_y_conform[last]
cat("Prediction interval: [", lower, ",", upper, "]")

Prediction interval: [ 40 , 112 ]

There is little to no difference between the two predictions intervals. See Abad
et al. (2022) and Vovk et al. (2019) for more discussions and experiments on
these two variants.

24.4 Split conformal prediction
One downside of the full conformal prediction is that it requires fitting the pre-
dictive model as many times as the number of possible values of 𝑦. Alternatively,
we can split the data into two sets: a training set to fit the model, and a cal-
ibration set to calculate non-conformity scores. The 𝛽-quantile of the scores is
then used to obtain a prediction inverval as before. The fact that the training
set is not involved in the scoring process has two implications:

• We only need to assume that the data points in the calibration set and
the new data point are exchangeable,

• The model is fitted only once on the training set. In particular, we no
longer have to fit the model iteratively over all possible values of 𝑦,

which lead to a faster computation at a cost of statistical efficiency since the
model is only fitted on a part of the dataset. This method, referred to as split
conformal prediction, can be performed as follows:

Let {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data and (𝑥new, ?) be a new data
point.

1. Split {1,… , 𝑛} into a training set Tr and a calibration set Cal.
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2. Fit our model on {(𝑥𝑖, 𝑦𝑖) ∶ 𝑖 ∈ Tr}. Denote the fitted model by ̂𝜇.
3. For each 𝑗 ∈ Cal, compute the (non-conformity) score 𝑅𝑗 = |𝑦𝑗 − ̂𝜇(𝑥𝑗)|.
4. Sort 𝑅1,… ,𝑅𝑛 in increasing order: 𝑅(1),… ,𝑅(𝑛).

5. Let 𝑘 = ⌈𝛽(𝑛 + 1)⌉. The prediction interval is

𝐶𝛽(𝑥new) = [ ̂𝑦new −𝑅(𝑘), ̂𝑦new +𝑅(𝑘)] .

Again, 𝐶𝛽(𝑥new) being a 𝛽-prediction interval is a simple consequence of the
quantile lemma: let 𝑦new be the actual outcome associated with 𝑥new and 𝑅new =
|𝑦new − ̂𝑦new|. As before, there is greater or equal to 𝛽 probability that 𝑅new ≤
𝑅(𝑘), which is equivalent to 𝑦new ∈ [ ̂𝑦new −𝑅(𝑘), ̂𝑦new +𝑅(𝑘)].
Here is an example of split conformal prediction on the KidIq dataset:

beta <- 0.95
m <- floor(n/2)
k <- ceiling(beta * (m+1))

calib_id <- sample(seq_len(n), size = m)
kidiq_train <- kidiq[-calib_id, ]
kidiq_calib <- kidiq[calib_id, ]

model <- lm(kid_score ~ ., data = kidiq_train)

yhat <- predict(model, newdata = kidiq_calib)
y <- kidiq_calib$kid_score
R <- abs(y - yhat)

R <- sort(R)[k]

ynew_hat <- predict(model, newdata = new_data)
lower <- ynew_hat - R
upper <- ynew_hat + R
cat("Prediction interval: [", lower, ",", upper, "]")

Prediction interval: [ 36.34356 , 111.7025 ]

The prediction interval is a bit wider than those of the full conformal predic-
tions, which agree with our comment regarding the statistical efficiency of split
conformal prediction at the beginning of the section.
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Chapter 25

Jackknife+, CV+ and
Quantile regression

A downside of the full conformal is the need to refit the predictive model every
time a new data point is introduced, making it computational expensive. On the
other hand, the split conformal is fast but less efficient in the amount of data
used to fit to the model. Between these two extremes, we would like to find
another method that can utilize each data point for both fitting and scoring,
while being reasonably fast to compute; two of such methods are Jackknife+
and CV+ (Barber et al. 2021).

25.1 Jackknife+
A simple way to fix the data efficiency problem is by fitting the model and
calibrating on the whole dataset. However, this method is likely to overfit, as
the non-conformity scores on the training data are naturally smaller than those
on the unseen data, resulting in a prediction interval that does not cover enough
data points.

Jackknife is introduced to address this issue using leave-one-out fitting and
calibration: let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data. For each
𝑖 ∈ {1,… , 𝑛}, we fit the model on all but one data point 𝒟1∶𝑛 − {(𝑥𝑖, 𝑦𝑖)} to
obtain a fitted model ̂𝜇−𝑖. The non-conformity score is then

𝑅𝑖 = |𝑦𝑖 − ̂𝜇−𝑖(𝑥𝑖)|.

Let ̂𝜇 be the model fitted on all observed data 𝒟1∶𝑛. Let 𝑥new be a new data
point. The 90% Jackknife prediction interval is similar to the one in the split
conformal:
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[5th-perc. of { ̂𝜇(𝑥new) − 𝑅𝑖} , 95th-perc. of { ̂𝜇(𝑥new) + 𝑅𝑖}] .

However, we are looking at percentiles of distances 𝑅𝑖 from a fixed point ̂𝜇,
which might be too restrictive and result in not enough coverage.

Jackknife+. To solve Jackknife’s issue, we simply use ̂𝜇−𝑖 to predict the out-
come of the new data point instead of ̂𝜇. Here are the steps to perform Jack-
knife+ in full details:

Let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data and (𝑥new, ?) be a new
data point.

For each 𝑖 ∈ {1,… , 𝑛},
1. Fit the model on all but one data point 𝒟1∶𝑛 − {(𝑥𝑖, 𝑦𝑖)}. Let ̂𝜇−𝑖 be the

fitted model.

2. Compute the non-conformity score: 𝑅𝑖 = |𝑦𝑖 − ̂𝜇−𝑖(𝑥𝑖)|.
3. Compute a lower and upper bound of ̂𝜇−𝑖’s prediction interval for the new

data point:

𝐿𝑖 = ̂𝜇−𝑖(𝑥new) − 𝑅𝑖, 𝑈𝑖 = ̂𝜇−𝑖(𝑥new) + 𝑅𝑖.

The Jackknife+ prediction interval is

𝐶JK+
1−2𝛼(𝑥new) = [𝛼-quantile of {𝐿1,… , 𝐿𝑛}, (1 − 𝛼)-quantile of {𝑈1,… , 𝑈𝑛}] .

The following theorem from Barber et al. (2021) shows that this prediction
interval has 1 − 2𝛼 probability coverage. So, for example, to obtain a 90%
prediction interval we would set 𝛼 = 0.05.
Theorem 25.1. If (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), (𝑥new, 𝑦new) are exchangeable, then

Pr[𝑦new ∈ 𝐶JK+
1−2𝛼(𝑥new)] ≥ 1 − 2𝛼.

The following diagram visualizes the difference between Jackknife and Jack-
knife+.

Let us try the Jackknife+ method on the KidIQ dataset.

kidiq <- read.csv("data/kidiq.csv")

n <- nrow(kidiq)
new_data <- data.frame(kid_score = NA,

mom_hs = 0,
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Figure 25.1: Comparison between Jackknife and Jackknife+ intervals.

mom_iq = 90,
mom_work = 1,
mom_age = 20)

head(kidiq)

kid_score mom_hs mom_iq mom_work mom_age
1 65 1 121.11753 4 27
2 98 1 89.36188 4 25
3 85 1 115.44316 4 27
4 83 1 99.44964 3 25
5 115 1 92.74571 4 27
6 98 0 107.90184 1 18

Suppose that we want to find a 90% prediction interval of the new data point;
then we have to set 𝛼 = 0.05.

alpha <- 0.05

lowers <- rep(NA, n)
uppers <- rep(NA, n)

for (i in 1:n) {
model <- lm(kid_score ~ ., data = kidiq[-i, ])
ynew_hat <- predict(model, new_data)
yi_hat <- predict(model, kidiq[i, ])
yi <- kidiq[i, "kid_score"]
Ri <- abs(yi - yi_hat)

lowers[i] <- ynew_hat - Ri
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uppers[i] <- ynew_hat + Ri
}

lower <- quantile(lowers, alpha)
upper <- quantile(uppers, 1 - alpha)
cat("Prediction interval: [", lower, ",", upper, "]")

Prediction interval: [ 39.96481 , 112.2441 ]

The prediction interval is similar to those obtained in the previous chapters, so
it should have sufficient coverage over the data points. To see this, we plot the
interval on the data that have similar features as those of the new data point.

kidiq_subset <- kidiq[kidiq$mom_hs == 0 &
kidiq$mom_work == 1 &
abs(kidiq$mom_age - 20) < 5,]

plot(kid_score ~ mom_iq, data = kidiq_subset,
ylab = "Child's IQ", xlab = "Mother's IQ",
ylim = c(38, 113), pch = 19)

arrows(x0 = new_data$mom_iq, y0 = lower,
x1 = new_data$mom_iq, y1 = upper,
code = 3, angle = 90, length = 0.1)
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25.2 CV+
CV+ is a generalization of Jackknife+ in which we split the data into several
folds instead of leaving one point out for calibration. Here are the steps to
perform CV+ in full details:
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Figure 25.2: A 5-fold split of the observed data.

Let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data, (𝑥new, ?) be a new data
point, and 𝐾 be a pre-specified number of folds.

1. Split {1,… , 𝑛} into 𝐾 folds 𝐼1,… , 𝐼𝐾. Define a function 𝑓 ∶ {1,… , 𝑛} →
{1,… ,𝐾} such that 𝑓(𝑖) = 𝑘 if 𝑖 ∈ 𝐼𝑘.

2. For each 𝑘 ∈ {1,… ,𝐾},
2.1. Fit the model on {(𝑥𝑖, 𝑦𝑖) ∶ 𝑖 ∈ {1,… , 𝑛} − 𝐼𝑘}. Let ̂𝜇𝑘 be the fitted
model.

2.2. For each 𝑖 ∈ 𝐼𝑘,
• Compute the non-conformity score 𝑅𝑖 = |𝑦𝑖 − ̂𝜇𝑘(𝑥𝑖)|.
• Compute a lower and upper bound of ̂𝜇𝑘’s prediction interval for

the new data point:

𝐿𝑖 = ̂𝜇𝑘(𝑥new) − 𝑅𝑖, 𝑈𝑖 = ̂𝜇𝑘(𝑥new) + 𝑅𝑖.

The CV+ prediction interval is

𝐶CV+
1−2𝛼(𝑥new) = [𝛼-quantile of {𝐿1,… , 𝐿𝑛}, (1 − 𝛼)-quantile of {𝑈1,… , 𝑈𝑛}] .

The following theorem from Barber et al. (2021) shows that this prediction
interval has 1 − 2𝛼 probability coverage. So, for example, to obtain a 90%
prediction interval we would set 𝛼 = 0.05.
Theorem 25.2. Theorem 2. If (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), (𝑥new, 𝑦new) are exchange-
able, then

Pr[𝑦new ∈ 𝐶CV+
1−2𝛼(𝑥new)] ≥ 1 − 2𝛼.
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Let us use CV+ to contruct a 90% prediction interval on KidIQ’s new data point.
Here, we use createFolds from caret package to split the data into 10 folds.

library(caret)

alpha <- 0.05

lowers <- rep(NA, n)
uppers <- rep(NA, n)

folds <- createFolds(kidiq$kid_score, k = 10)
for (fold in folds) {

model <- lm(kid_score ~ ., data = kidiq[-fold, ])
ynew_hat <- predict(model, new_data)
yi_hat <- predict(model, kidiq[fold, ])
yi <- kidiq[fold, "kid_score"]
Ri <- abs(yi - yi_hat)

lowers[fold] <- ynew_hat - Ri
uppers[fold] <- ynew_hat + Ri

}

lower <- quantile(lowers, alpha)
upper <- quantile(uppers, 1 - alpha)
cat("Prediction interval: [", lower, ",", upper, "]")

Prediction interval: [ 39.80893 , 111.6746 ]

25.3 Quantile regression
In the split conformal, the prediction interval is [ ̂𝑦new −𝑅(𝑘), ̂𝑦new +𝑅(𝑘)]. Notice
that the interval has constant width independent of the new data point. So the
split conformal might not be appropriate for heteroskedastic data.

Alternatively, we could instead estimate a lower and upper quantiles of the
prediction interval. To estimate a specific quantile of the outcome given a set of
predictors, we can use the quantile regression. Below is an example of using the
quantile regression to estimate the 0.1-quantile and 0.9-quantiles on simulated
data in R.

library(quantreg)
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n_points <- 500
slope <- 2

x <- runif(n_points, 0, 2)
u <- x * rnorm(n_points) # heteroskedastic errors
y <- x * slope + u

simdata <- data.frame(x = x, y = y)

plot(x, y, pch = 20, ylim = c(-0.5, 7))
abline(rq(y ~ x, tau = 0.9), col = "blue", lwd = 2)
abline(rq(y ~ x, tau = 0.1), col = "red", lwd = 2)
legend("topleft", legend = c("0.9-quantile", "0.1-quantile"),

col = c("blue", "red"), lty = 1, lwd = 2)
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Figure 25.3: 0.1-quantile regression and 0.9-quantile regression.

This plot suggests that the quantile estimates can be used to construct a pre-
diction interval.

Motivated by this observation, Romano, Patterson, and Candes (2019) intro-
duced conformal quantile regression (CQR), which uses the quantile estimates
to construct a prediction interval. The steps to perform CQR are as follows:

Let {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data, (𝑥new, ?) be a new data point
and 𝛾 ∈ (0, 0.5) is a pre-specified quantile of the prediction.

1. Split {1,… , 𝑛} into a training set Tr and a calibration set Cal.
2. Fit 𝛾-quantile and (1 − 𝛾)-quantile regressions on {(𝑥𝑖, 𝑦𝑖) ∶ 𝑖 ∈ Tr}. De-

note the fitted models by ̂𝜇− and ̂𝜇+, respectively.
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3. For each 𝑗 ∈ Cal, compute the non-conformity score:

𝑅𝑗 = max{ ̂𝑞−(𝑥𝑗) − 𝑦𝑗, 𝑦𝑗 − ̂𝑞+(𝑥𝑗)} .

In other words, 𝑅𝑗 is a signed distance form 𝑦𝑖 to one of the regression lines,
where 𝑅𝑗 is negative if ̂𝑞−(𝑥𝑖) < 𝑦𝑖 < ̂𝑞+(𝑥𝑖) and positive otherwise.

4. Sort 𝑅1,… ,𝑅𝑛 in increasing order: 𝑅(1),… ,𝑅(𝑛).

5. Let 𝑘 = ⌈𝛽(𝑛 + 1)⌉. The prediction interval is

𝐶CQR
𝛽 (𝑥new) = [ ̂𝑞−(𝑥new) − 𝑅(𝑘), ̂𝑞+(𝑥new) + 𝑅(𝑘)].

The following theorem from Romano, Patterson, and Candes (2019) shows that
this prediction interval has 𝛽 probability coverage.

If (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), (𝑥new, 𝑦new) are exchangeable, then

Pr[𝑦new ∈ 𝐶CQR
𝛽 (𝑥new)] ≥ 𝛽.

beta <- 0.95
q <- 0.2
m <- floor(n_points/2)

new_xy <- data.frame(x = 1.5, y = NA)

calib_id <- sample(seq_len(n_points), size = m)
simdata_train <- simdata[-calib_id, ]
simdata_calib <- simdata[calib_id, ]

# Training
model_lo <- rq(y ~ x, tau = q, data = simdata_train)
model_hi <- rq(y ~ x, tau = 1 - q, data = simdata_train)

# Calibration
yhat_lo <- predict(model_lo, newdata = simdata_calib)
yhat_hi <- predict(model_hi, newdata = simdata_calib)
y <- simdata_calib$y
R <- pmax(yhat_lo - y, y - yhat_hi)

Rk <- quantile(R, beta)

# Estimate the quantiles of the new data point
ynew_hat_lo <- predict(model_lo, newdata = new_xy)
ynew_hat_hi <- predict(model_hi, newdata = new_xy)
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# Construct the prediction interval
lower <- ynew_hat_lo - Rk
upper <- ynew_hat_hi + Rk
cat("Prediction interval: [", lower, ",", upper, "]")

Prediction interval: [ 0.6791725 , 5.449896 ]

Let us plot the prediction interval to see how it fares on the simulated data,

plot(y ~ x, data = simdata, pch = 20, ylim = c(-0.5, 7))
arrows(x0 = new_xy$x, y0 = lower,

x1 = new_xy$x, y1 = upper,
code = 3, angle = 90, length = 0.1,
col = "red", lwd = 2.5)
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which shows that the interval has sufficient coverage at 𝑥 = 1.5.
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Chapter 26

Conformal prediction for
classification

Consider the following classification task: let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be
the observed data with 𝑦𝑖 ∈ {1,… ,𝐾}, and (𝑥new, ?) be a new data point. The
goal is to find a class 𝑦new ∈ {1,… ,𝐾} that is best associated with 𝑥new.

As in regression, conformal prediction allows us to obtain a prediction set which
contains multiple classes. Let ̂𝑝(𝑦|𝑥) be a model that estimates the probability
that an example with predictor 𝑥 is in class 𝑦; for example, ̂𝑝 could be a logistic
regression model. We compute the model’s likelihood on (𝑥𝑖, 𝑦𝑖):

𝑃𝑖 = ̂𝑝−𝑖(𝑦𝑖|𝑥𝑖).

One candidate for the non-conformity score is the negative likelihood:

𝑅𝑖 = −𝑃𝑖.

We then sort 𝑅1,… ,𝑅𝑛 in increasing order: 𝑅(1),… ,𝑅(𝑛). Let 𝛼 ∈ (0.5, 1) and
𝛽 = 1 − 𝛼. The quantile lemma in Section 24.2 tells us that the prediction set:

{𝑦 ∈ {1,… ,𝐾} ∶ − ̂𝑝(𝑦|𝑥new) ≤ ⌈𝛽(𝑛 + 1)⌉-quantile of {𝑅1,… ,𝑅𝑛}},

has 1−𝛼 coverage probability. We can also write this set in terms of likelihood:

{𝑦 ∈ {1,… ,𝐾} ∶ ̂𝑝(𝑦|𝑥new) ≥ ⌊𝛼(𝑛 + 1)⌋-quantile of {𝑃1,… , 𝑃𝑛}},

which is easier to interpret. From this observation, we present here two ap-
proaches to obtain a prediction set.
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26.1 Full conformal approach
Let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data with 𝑦𝑖 ∈ {1,… ,𝐾},
and (𝑥new, ?) be a new data point.

For each 𝑦new ∈ {1,… ,𝐾},
1. Add the new point {(𝑥new, 𝑦new)} to the dataset.

2. Fit the model on 𝒟1∶𝑛 ∪ {(𝑥new, 𝑦new)}. Let ̂𝑝 be the fitted model.

3. For each 𝑖 ∈ {1,… , 𝑛, new}, compute the probability estimate
𝑃𝑖 = ̂𝑝(𝑦𝑖|𝑥𝑖).

4. Sort the probabilities 𝑃1,… , 𝑃𝑛 in increasing order: 𝑃(1),… , 𝑃(𝑛).

5. Let 𝑘 = ⌊𝛼(𝑛+1)⌋. Include 𝑦new in the prediction set if ̂𝑝(𝑦new|𝑥new) ≥ 𝑃(𝑘),
otherwise we discard it.

In summary, the prediction set is

𝒮1−𝛼(𝑥new) = {𝑦new ∈ {1,… ,𝐾} ∶ ̂𝑝(𝑦new|𝑥new) ≥ 𝑃(𝑘)}.

It follows from Lemma 24.1 that this prediction set has 1−𝛼 probability coverage:
let (𝑥new, 𝑦) be a new data point, then

Pr[𝑦 ∈ 𝒮1−𝛼(𝑥new)] ≥ 1 − 𝛼.

26.2 Jackknife+ approach
The problem with the full conformal approach is the need to refit the model
on every new data point. To avoid this problem, we can take the Jackknife+
approach and fit the model on the training set and make a prediction on the new
data point. Here are the steps to obtain a prediction set using the Jackknife+
approach in full details:

Let 𝒟1∶𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} be the observed data with 𝑦𝑖 ∈ {1,… ,𝐾},
and (𝑥new, ?) be a new data point.

1. For each 𝑖 ∈ {1,… , 𝑛, new},
1.1. Fit the model on 𝒟1∶𝑛. Let ̂𝑝−𝑖 be the fitted model.

1.2. Compute the probability estimate 𝑃𝑖 = ̂𝑝−𝑖(𝑦𝑖|𝑥𝑖).
2. Sort the probabilities 𝑃1,… , 𝑃𝑛 in increasing order: 𝑃(1),… , 𝑃(𝑛).

3. For each 𝑦new ∈ {1,… ,𝐾},
Include 𝑦new in the prediction set if ̂𝑝−𝑖(𝑦new|𝑥new) ≥ 𝑃(𝑘) where 𝑘 = ⌊𝛼(𝑛+
1)⌋.
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In summary, the prediction set is

𝒮JK+
1−2𝛼(𝑥new) = {𝑦new ∈ {1,… ,𝐾} ∶ ̂𝑝−𝑖(𝑦new|𝑥new) ≥ 𝑃(𝑘)}.

This set has 1−2𝛼 probability coverage (Romano, Patterson, and Candes 2019).
More precisely, let (𝑥new, 𝑦) be a new data point, then

Pr[𝑦 ∈ 𝒮JK+
1−𝛼(𝑥new)] ≥ 1 − 2𝛼.

296



References

Abad, Javier, Umang Bhatt, Adrian Weller, and Giovanni Cherubin. 2022.
“Approximating Full Conformal Prediction at Scale via Influence Functions.”
In.

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. “Synthetic
Control Methods for Comparative Case Studies: Estimating the Effect of
California’s Tobacco Control Program.” Journal of the American Statistical
Association 105 (490): 493–505. https://doi.org/10.1198/jasa.2009.ap08746.

Alexander, Monica. 2019. “Analyzing Name Changes After Marriage Using a
Non-Representative Survey.” Personal Blog. https://www.monicaalexander.
com/posts/2019-08-07-mrp/.

Barber, Rina Foygel, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tib-
shirani. 2021. “Predictive Inference with the Jackknife+.” The Annals of
Statistics 49 (1): 486–507. https://doi.org/10.1214/20-AOS1965.

Brodersen, Kay H., Fabian Gallusser, Jim Koehler, Nicolas Remy, and Steven
L. Scott. 2015. “INFERRING CAUSAL IMPACT USING BAYESIAN
STRUCTURAL TIME-SERIES MODELS.” The Annals of Applied Statistics
9 (1): 247–74. http://www.jstor.org/stable/24522418.

Candès, Emmanuel. 2022. “Lecture Notes of Stats 300C: Theory of Statistics.”
2022. https://candes.su.domains/teaching/stats300c/lectures.html.

Card, David, and Alan B. Krueger. 1993. “Minimum Wages and Employment:
A Case Study of the Fast Food Industry in New Jersey and Pennsylvania.”
Working {Paper}. Working Paper Series. National Bureau of Economic
Research. https://doi.org/10.3386/w4509.

Chen, M. Keith. 2016. “Dynamic Pricing in a Labor Market.” In Proceedings
of the 2016 ACM Conference on Economics and Computation. ACM. https:
//doi.org/10.1145/2940716.2940798.

Cunningham, Scott. 2021. Causal Inference: The Mixtape. Yale university
press.

Datta, Hannes, George Knox, and Bart J. Bronnenberg. 2018. “Changing
Their Tune: How Consumers’ Adoption of Online Streaming Affects Music
Consumption and Discovery.” Marketing Science 37 (1): 5–21. https://doi.
org/10.1287/mksc.2017.1051.

Facure, Matheus. 2020. “Python Causality Handbook.” 2020. https://matheu
sfacure.github.io/python-causality-handbook/landing-page.html.

297

https://doi.org/10.1198/jasa.2009.ap08746
https://www.monicaalexander.com/posts/2019-08-07-mrp/
https://www.monicaalexander.com/posts/2019-08-07-mrp/
https://doi.org/10.1214/20-AOS1965
http://www.jstor.org/stable/24522418
https://candes.su.domains/teaching/stats300c/lectures.html
https://doi.org/10.3386/w4509
https://doi.org/10.1145/2940716.2940798
https://doi.org/10.1145/2940716.2940798
https://doi.org/10.1287/mksc.2017.1051
https://doi.org/10.1287/mksc.2017.1051
https://matheusfacure.github.io/python-causality-handbook/landing-page.html
https://matheusfacure.github.io/python-causality-handbook/landing-page.html


Farre-Mensa, Joan, Deepak Hegde, and Alexander Ljungqvist. 2017. “What
Is a Patent Worth? Evidence from the U.S. Patent ”Lottery”.” Working
{Paper}. Working Paper Series. National Bureau of Economic Research.
https://doi.org/10.3386/w23268.

Forter, Carson. 2017. “Two-Stage Least Squares For A/B Tests.” Twitch Blog.
https://blog.twitch.tv/en/2017/06/30/two-stage-least-squares-for-a-b-
tests-669d07f904f7/.

Funk, Michele Jonsson, Daniel Westreich, Chris Wiesen, Til Stürmer, M. Alan
Brookhart, and Marie Davidian. 2011. “Doubly Robust Estimation of
Causal Effects.” American Journal of Epidemiology 173 (7): 761–67. https:
//doi.org/10.1093/aje/kwq439.

Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2020. Regression and Other
Stories. Analytical Methods for Social Research. Cambridge University
Press. https://doi.org/10.1017/9781139161879.

Hanck, Christoph, Martin Arnold, Alexander Gerber, and Martin Schmelzer.
2019. Introduction to Econometrics with r. University of Duisburg-Essen.

Huntington-Klein, Nick. 2021. The Effect: An Introduction to Research Design
and Causality. CRC Press.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021.
An Introduction to Statistical Learning. Springer US. https://doi.org/10.1
007/978-1-0716-1418-1.

Kharel, Ujwal. 2021. “Causal Inference Using Instrumental Variables.” Roblox
Blog. https://blog.roblox.com/2021/09/causal-inference-using-instrument
al-variables.

Künzel, Sören R., Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. 2019. “Met-
alearners for Estimating Heterogeneous Treatment Effects Using Machine
Learning.” Proceedings of the National Academy of Sciences 116 (10): 4156–
65. https://doi.org/10.1073/pnas.1804597116.

Lei, Jing, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry
Wasserman. 2018. “Distribution-Free Predictive Inference for Regression.”
Journal of the American Statistical Association 113 (523): 1094–1111. https:
//doi.org/10.1080/01621459.2017.1307116.

Mehrotra, Rishabh, Prasanta Bhattacharya, and Mounia Lalmas. 2020. “Infer-
ring the Causal Impact of New Track Releases on Music Recommendation
Platforms Through Counterfactual Predictions.” In Proceedings of the 14th
ACM Conference on Recommender Systems, 687–91. RecSys ’20. New York,
NY, USA: Association for Computing Machinery. https://doi.org/10.1145/
3383313.3418491.

Romano, Yaniv, Evan Patterson, and Emmanuel Candes. 2019. “Conformalized
Quantile Regression.” In Advances in Neural Information Processing Sys-
tems, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E.
Fox, and R. Garnett. Vol. 32. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2019/file/5103c3584b063c431bd1268e9b5e76fb-Paper.pdf.

Stock, James, and Motohiro Yogo. 2002. “Testing for Weak Instruments in
Linear IV Regression.” National Bureau of Economic Research. https://do
i.org/10.3386/t0284.

298

https://doi.org/10.3386/w23268
https://blog.twitch.tv/en/2017/06/30/two-stage-least-squares-for-a-b-tests-669d07f904f7/
https://blog.twitch.tv/en/2017/06/30/two-stage-least-squares-for-a-b-tests-669d07f904f7/
https://doi.org/10.1093/aje/kwq439
https://doi.org/10.1093/aje/kwq439
https://doi.org/10.1017/9781139161879
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://blog.roblox.com/2021/09/causal-inference-using-instrumental-variables
https://blog.roblox.com/2021/09/causal-inference-using-instrumental-variables
https://doi.org/10.1073/pnas.1804597116
https://doi.org/10.1080/01621459.2017.1307116
https://doi.org/10.1080/01621459.2017.1307116
https://doi.org/10.1145/3383313.3418491
https://doi.org/10.1145/3383313.3418491
https://proceedings.neurips.cc/paper/2019/file/5103c3584b063c431bd1268e9b5e76fb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5103c3584b063c431bd1268e9b5e76fb-Paper.pdf
https://doi.org/10.3386/t0284
https://doi.org/10.3386/t0284


Vella, Francis, and Marno Verbeek. 1998. “Whose Wages Do Unions Raise? A
Dynamic Model of Unionism and Wage Rate Determination for Young Men.”
Journal of Applied Econometrics 13 (2): 163–83. http://www.jstor.org/st
able/223257.

Vovk, Vladimir, Alexander Gammerman, and Glenn Shafer. 2005. Algorithmic
Learning in a Random World. Springer-Verlag. https://doi.org/10.1007/b1
06715.

Vovk, Vladimir, Jieli Shen, Valery Manokhin, and Min-ge Xie. 2019. “Nonpara-
metric Predictive Distributions Based on Conformal Prediction.” Machine
Learning 108 (3): 445–74. https://doi.org/10.1007/s10994-018-5755-8.

Webel, Karsten. 2011. JH Stock, MW Watson: Introduction to Econometrics.
Springer Nature BV.

299

http://www.jstor.org/stable/223257
http://www.jstor.org/stable/223257
https://doi.org/10.1007/b106715
https://doi.org/10.1007/b106715
https://doi.org/10.1007/s10994-018-5755-8

	Preface
	Contents

	I Linear regression
	Basic regression
	Simulation
	Earnings data
	Historical origins of regression
	How regression to the mean can confuse people

	Linear regression with a single predictor
	Predicting presidential vote share from the economy
	Predicting the 2008 election
	Predicting the 2016 election

	Checking the model's fit via simulation

	Fitting linear regression
	Least squares
	Estimation of residual standard deviation \sigma
	Maximum likelihood estimation
	Bayesian linear regression
	Simulations from stan_glm

	Prediction and Bayesian inference
	Prediction and uncertainty: predict, posterior_linpred, and posterior_predict
	Predictions on multiple inputs
	Predictions with input uncertainty

	Different types of priors in regression
	Example of regression with difference priors: Beauty and sex ratio


	Linear regression with multiple predictors
	Interactions
	Regression with multiple levels of a categorical predictor
	Simulation-based prediction

	Paired and blocked designs as a regression problem
	Weighted regression

	Model diagnostics and evaluation
	Plotting the data and the fitted model
	Model with one predictor
	Model with two predictors
	Model with multiple predictors

	Plotting the outcome against the prediction
	Residual plots
	Comparing simulated data to real data
	Explained variance R^2
	Bayesian R^2

	Cross validation
	Leave-one-out cross validation


	Logarithmic transformations
	Interpreting the coefficients
	When there are zero-valued outcomes

	Model checking with simulations
	elpd for the logarithmic regression
	Log-log model

	Comparing regression models
	Example: predicting the yields of mesquite bushes
	Constructing a simpler model

	Different priors for the coefficients
	Priors for variable selection



	II Generalized linear models
	Logistic regression
	Maximum likelihood for logistic regression
	Bayesian inference for logistic regression
	Fitting a logistic regression model in R
	Interpreting the coefficients

	Different types of predictions
	Point prediction
	Generating linear predictions
	Generating outcome probabilities
	Generating binary outcomes
	Predictions with multiple inputs


	Logistic regression with multiple predictors
	Example: wells in Bangladesh
	Average predictive difference for coefficient interpretation
	Logistic regression with interactions

	Diagnostics of logistic regression models
	Plotting logistic regression and binary data
	Plotting binary data using binned averages
	Plotting decision boundaries when there are two predictors

	Predictive simulation
	Log score for logistic regression
	Example of variable selection: well-switching example

	Residuals for logistic regression
	Logarithmic transformation
	Error rate
	Nonidentification
	Collinearity
	Separation


	Generalized linear models
	Definition of generalized linear models
	Poisson and negative binomial regression
	Poisson regression
	Overdispersion and underdispersion
	Negative binomial regression
	Exposure and offset
	Example: effect of pest management on reducing cockroach levels

	Logistic-binomial and beta-binomial models
	Logistic-binomial model
	Overdispersion
	Beta-binomial model

	Ordered and unordered categorical regression
	Ordered logistic regression
	Unordered logistic regression

	Models with unequal error standard deviations
	Mixture models for data with many zeros
	Hurdle models
	Zero-inflated models


	Poststratification: regression with non-representative sample

	III Causal inference
	Basics of causal inference
	A running example
	Potential outcomes, counterfactuals, and causal effects

	Average causal effects
	Randomized experiments
	Completely randomized experiments
	Randomized blocks experiments
	Matched pairs experiments
	Group or cluster-randomized experiments

	Assumptions of randomized experiments
	Ignorability
	Stable unit treatment value assumption (SUTVA)

	Some difficulties in causal inference

	Causal inference with regression
	Regression for simple difference estimate
	Adding pre-treatment covariates to the model
	Regression with interactions
	Do not add post-treatment covariates to the regression


	Causal inference with observational data
	Assumption in an observational study
	Omitted variable bias
	Imbalance of confounder distributions
	Lack of complete overlap

	The Electric Company example
	Examining overlap of the confounder distribution


	Subclassification and propensity score matching
	Subclassification
	Average effect of treatment on the treated

	Propensity score matching
	Step 1: Choose the confounders and estimand
	Step 2: Estimate the propensity score
	Step 3: Match controlled units to the treated units
	Step 4: Inspect balance and overlap in propensity scores
	Before step 5: Repeat steps 2-4 until a good balance is achieved
	Step 5: Fit the regression on the restructured data
	Other considerations

	Inverse probability weighting

	Instrumental variables
	Motivation
	Terminologies for instrumental varialbes
	Assumptions for instrumental variables
	Intent-to-treat (ITT) effect and complier average causal effec (CACE)
	Compute CACE using ITT

	Two-stage least squares
	Multiple instruments, treatments and covariates
	Testing the assumptions
	Testing relevance
	Testing exclusion restriction


	Regression discontinuity
	Deriving the linear regression
	Example: The effect of educational support on test scores in Chile

	Difference-in-differences
	Example: effect of minimum wage on employment
	Regression for the difference-in-differences estimate
	Different observations before and after the treatment time
	Difference-in-differences by matching

	Parallel trends assumption
	Checking the parallel trends assumption


	Panel data
	Fixed effects model
	Time effects
	Assumptions and Cautions

	Synthetic control
	Example: study of the effect of taxation on cigarette consumption
	The method of synthetic control
	Synthetic control in R using the Synth package
	Permutation test

	Use cases of causal inference in industry
	Matching
	Instrumental variables
	Difference-in-differences
	Panel data
	Synthetic control


	IV Conformal prediction
	Full & split conformal prediction
	Review: quantile
	Quantile Lemma
	Full conformal prediction
	Deleted full conformal prediction
	Ordinary full conformal prediction

	Split conformal prediction

	Jackknife+, CV+ and Quantile regression
	Jackknife+
	CV+
	Quantile regression

	Conformal prediction for classification
	Full conformal approach
	Jackknife+ approach

	References


