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Overview

¢ Introduction to Optimal Transport
e Optimal Transport Map in Finite Dimensions

e Optimal Transport Map in Infinite Dimensions



Motivating Question
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Fuzzy Version
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Typical Measurement

T d(p1,p2)
LP norm
KL divergence




Returning to the Question
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Returning to the Question

p(z,y) p(z,y)  pa(z,y)
» ¥ ¥
Target

Both have the same distance!



Alternative ldea

Compare in this direction

Not in this direction




Monge's Formulation

TyP=Q<+= X ~P=Y ~Q.
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Monge's Formulation

Monge’s Formulation might not have a solution!

Example: dP(z) = 6,,(z) dz, dQ(y) = se7¥/2dy.
There’s no T such that 7,P = @'
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Wasserstein-p Distance
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Example of Couplings
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Exam
ple of Coupli
ings
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Kantorovich Problem
iﬁ/ |z — yl|* dn(z,y)
Xx)Y

™

s.t. misacouplingof Pand Q

sup /fdP—l—/ng
feLl(P),geL(Q
st. f(z) +g(y) < llz —yl|>,V(z,y) € X x Y

Easier to optimize: Real-valued functions instead of coupling. .



Primal and Dual Form Solutions
Letc = ||z — y]|%

inf / cdm(x,y)
7 coupling

:sflg) ﬂpig;ii;ve/c—f(x) g(y)dm(z,y) /deP’—I—/ng

= —ooifc— f(z) — g(y) < 0forsome z,y

Complementary Slackness

If (70, fo, go) is a solution:

mo(2*,y") > 0 <= fo(z") + go(y") = ll=* — y*|*
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Solving the Dual Form

sup /deP’Jr/ng
feLY(P),geLl'(Q

st. f(2) +9v) < llz—yll*V(z,y) € X x Y

For any (z*, y*) € Supp(my),
fo(x™) + go(y") = |l&* — y*||* = =" maximizes ||z — y*||* — fo(x)
(assume f, is differentiable) = 2 solves V||« — ’y*”2 = Vfo(z)

1
=y =" - §Vf0($*)-
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Existence and Unique of Transport Map

Brenier’s theorem

Let IP be absolutely continuous wrt the Lebesgue measure
and both P and Q have finite second moments. Then, there
exists a unique optimal transport map 7, : X — Y, defined
by:
1 1, 5 1
Ty(x) = = 5Vo(w) = V5ol = 5 fol@))

-~

¥o()

for some differentiable function f,. Inaddition, o is convex.
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c-transform

To simplify the dual problem, we define the c-transform:
Fe(y) = infllz — y|* = £(2).
Plugging g = f€in the dual problem:
Kantorovich’s Semi-Dual Problem
sup / fdP + / fedQ.
feL(®) Jx Y

(fo, go) solves dual problem —> f, solves semi-dual problem
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Relating back to Ty
Plugging f(z) = ||z||* — 2¢(z) in the Kantorovich’s problem:

Brenier’s Semi-Dual Problem

inf dIP’Jr/ *dQ,
soeLl(P)/ch ycp &

where * is the convex conjugate of ¢:

®*(y) = sup(z,y) — p(z).

T

o solves Brenier problem = V, is the transport map.
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Summary of Semi-Dual Problems

Brenier’s Problem Kantorovich’s Problem
inf /god]P’—l—/cp*dQ sup /deP’—l—/fch.
pel!(P) Jx Y feLll(p)Jx y

Brenier potential Kantorovich potential
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Estimation
Assume Brenier’s assumptions hold = T, exists

Goal: Estimate T, from data:
Xi,...,.X, ~PandY,...,Y, ~Q

Plug-In Estimator

N 1= 1 .
Pn = argmin = Y (X)) + = > _ 0" ().
peF M50 n

T, =V,

over some function class F.
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Minimax Problem

Setup: Assume that 7 lies in some function class F.

R,.(Fo mf sup /HT (z)]|? dP(x)

T, ToEFy

The estimator that minimizes the worst-case estimation error.
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Minimax Lower Bound: Euclidean Case

Minimax Lower Bound [Hitter and Rigollet, 2021]

If a > 1,9 c R?and the true transport map lies in:
bounded

F={T cC*Q),M™ <VT < M,
T = V for some differentiable convex ¢ : Q — R},

then the following bound holds: (Rate improves with SmOOthneSS}
) 4
> mn 5 C f dimensionalit J
Rn<F) zmn 2a—2+d<—( urse o y
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Optimal Estimators

Which estimator fn achieves the minimax rate?

Target Error Rate
[15i(z) = T@)P dB(a) ~ .
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Plug-In Estimator

= argmm—ng Zgo*(Yj)

peF

is minimax optimal when:
e F = {finite wavelet series, must be strongly convex}
[Hitter and Rigollet, 2021]

e F = {finite wavelet series} or {ReQU neural networks}
[Divol et al., 2025]
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Estimators from smoothed densities

Estimate densities p,,(x) and g, (y) using kernel or wavelets.

Let I?Dn and @n be distributions w/ densities p,,(z) and ¢, (y)-

T, = argmin / IT(z) — || dP,,.
T#E\Dn:@n

T, is minimax optimal for both kernel and wavelet estimators
[Manole et al., 2021].
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Extending to Infinite Dimensions

Optimal transport from X € [0,1]*toY € [0, 1]*.

Why?
¢ We could gain some insight into combatting the curse of
dimensionality.

e Application to functional data analysis:

e We canview function f € L*([0, 1]) as infinite sequence
(a1, as, ...)via Fourier or Wavelet transform.

e Example: Matching time series between two individuals.
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Time series alignment

Original functions

1000 | 1000

500 | 500 |

Hospitalization rates (per million) for 16 European countries from April 1,20, to July 1,’21.
[Wuetal., 2023]



Optimal Transport in Infinite Dimensions

Let H be a separable Hilbert space with basis {¢;}3°, C H.

A Borel-measurable set £ < %H is a Gaussian null set if
1(E) = 0 for any Gaussian measure! ; on .

'(measure of variables of the forma + Y7, X;e; where X; ~ N(0,1).)
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Optimal Transport in Infinite Dimensions

Brenier’'s Theorem on # [Ambrosio et al., 2005]

Let P, Q be prob. measures with supports Qp, Qg C H.

Assume P is zero on all Gaussian null sets, Q has a bounded
support, and both I’ and Q have finite second moments.

Then, there exists a unique transport map:
Ty : Qp — QQ,

and a convex function ¢, € L!(I?) such that Vi, = Tp.
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Minimax Lower Bound for C? Functions

Theorem (Informal) [Ponnoprat and Imaizumi, 2025]

Thereis a subset 2 C [0, 1]* such that, if the transport map
Ty lies in:
Fc{T=Vy|pe* ()},

then the following bound holds: S 18] + X5, 18i050] < B

R,(F) 2

~logn

Very slow rate! 2



New Function Space for ¢,
Let Zg° = {(l1, 1, ...) | l; € Z,1; = 0 for all but finitely many i}

Fact: Any function ¢ € L?([0,1]°°) can be approximated by
Fourier series:

f(mh L2, L3, . . ) ~ Z fl¢l1(m1)¢l2(w2)¢l3(m3) T

€7

where f; € Rand
\/§cos(2w|li|zci), I, <0
Ui, () = { V2sin(27|l|x;), l; >0

17 lZ:O
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Grouping Frequencies

Let’s denote
¢l($) = ¢11($1)¢52(w2)¢13(m3) I

Foreach s = (s, s9,...) € N, we gather all terms between two

consecutive dyadic frequencies: 2%~ and 2%
5s<f) — E flwl-
1eZ30:2%1 1<l <25
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Function Space for Tj

¢ We want to characterize the Brenier potential o, by
Fourier series.

e However, ¢, has to be convex! There is no nice way to
describe convexity in terms of Fourier coefficients.

e So we use the Fourier series for the Kantorovich potential
fo instead.
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Function Space for Tj

Specify the direction-wise smoothness levels:
a=(ayas,...)

Characterize smoothness of Kantorovich potential f, by the

decay of each 6,(f): [ must be small for large s; and a; }

O\
Z QQZiaisZ-H(gs(f)H%Q < 1}_

0
SENO

\ 4

~
15l gra
[Okumoto and Suzuki, 2021] 36
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For example, a = (1,2, 00,00,...) represents f : [0,1]> — R that
is twice as smooth along x5 compared to z;.

f(xla wQ)
0.3

0.2
0.1
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Minimax Lower Bound

Theorem [Ponnoprat and Imaizumi, 2025]

Suppose that P and Q satisfy all the assumptions of the
Brenier’s Theorem, and thata; < a. < ...

The minimax lower bound of learning an optimal transport

map from F, is:

Ro(Fo) > n 2L,
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Our Proposed Estimator

Specify a positive integer J, and then solve:

Plug-In Estimator

. 1 1 .
P = argmin = > o(X;) + = > ¢*(¥)).
@Efa,J n i=1 n

A~

Tn,a,J = vQﬁn,a,J

Fa={o=31 =31 \ = % finlflm<1]

1|27 /@i
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Optimality of the Plug-In Estimator

Theorem [Ponnoprat and Imaizumi, 2025]

Suppose that P and Q satisfy all the assumptions of the Bre-
nier’s Theorem,a; < a, < ...,and a; ~ i‘forsomeq > 0.

Let J =~ logn.

Then, the estimator fma,J satisfies the following bound:

- 2a
/ 1T, (%) — To(@)||? dP(z) S n~ 2T,
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Impracticality of Plug-In Estimator

B = axgmin = 30 p(X) + 2 3" (1)),
j=1

¥ i=1

1 1
S-t-%0:§”'”2—§f, f= Y ftnlflla<1

|15 527 /@i

Ignoring the ¢* term, this is a constraint linear program over the
coefficients f;.

However, the number of the coefficients is exponential in the
number of dimensions, making it impractical.
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Neural Network Estimator

Instead, we consider the following function class for f:

F(W, L, R, B) = {neural networks with width < W, #layers < L
#parameters < R, values of parameters < B}

Neural Network Estimator
R ' 1 n 1 n .
Pnwrrp = argnin - Z o(X;) + - Z " (Y)),
® i=1 j=1
1, ., 1

A~

Tn,WLRB = vLPQ,WLRB-
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Optimality of the Neural Estimator

Theorem [Ponnoprat and Imaizumi, 2025]

Suppose that P and Q satisfy all the assumptions of the Bre-
nier’s Theorem,a; < a, < ...,and a; =~ 7 for some g > 0.

Let J ~ logn. Then,therearesome W, L, R, B dependingon

J,a; and g such that T\n,WLRB satisfies the following bound:

= 2a
/HTTL,WLRB(:C> — T()(CU)HQ dIP(:L’) S n_ﬁ.
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Computational Aspects

e Still, these estimators are computational expensive due to
the convex conjugate: ¢*(y) = sup,(x,y) — ¢(z).

e Solution #1: Use another neural network to model ¢*
“Amortization” [Amos, 2023].

e Solution #2: Use separate networks to model the potential
and the transport map [Korotin et al., 2023]:

supmf{ ZHX T(X,)|? - <Xi>>+%zf<xi>}.
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Experiment 1: No Curse of Dimensionality
(To(2))i = i —

riy i = 0.5, k(i) = %1 Fixn = 100.
Gn=12l01>-13 f,, «— CNN with two convolutional layers.
==
= = ¢=—13
i~
Al
=
07 " " "
1060 200

500 1000
Number of dimensions (d)
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Experiment 2: Error Rate
(To(2))i = i — gl — 0.5[", k(i) ~ i1, Fix d = 200.
$n =3Il 1I> = 1 f, <— CNNwith two convolutional layers.

f— ¢ =1 (upper bound = O(n="7))

—I— ¢=13 (upper bound = 6(n*0-79))
7084))

q = 2 (upper bound = 5(71

Ep|T — Ty

slope = —0.77

10_1§

" [slope = —0.83

: : : . slope = —0.95
102 103
Sample size (n)

46



Application: Domain Adaptation

Signal Value

Signal Value

Subject 1

Session 1, Label: 0

Subject 2

Session 1, Label: ?

Session 2, Label: ?

0.5+

0.0+

-0.5

~1.04

Mental workload data [Huang et al., 2021]. Label: 0 = Normal, 1 = Intense.
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Result

1I‘\’ba!ndom Forest's Accuracy Across Subjects

0.8

Accuracy
© o
B (¢}

0.0

Method

I No Adaptation

- s CORAL
l [ Neural OT
’ #1 #2 #3 #4

Subject
Result of adapting 8 training subjects to 4 test subjects.

48



Functional PCA of the Transports

Principal Component 2

-6

Feature 1

Feature 2
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Train Subject ° -6 Train Subject O _.'
Transformed Subject Transformed Subject °oe hbS
Test Subject oy -8 Test Subject -
-5 0 5 10 -20 -15 -10 -5 0 5 10

Principal Component 1

Principal Component 1
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Conclusion

e We study the problem of optimal transport (OT) map
estimation. Existing results suffer from the curse of
dimensionality.

¢ We introduce a way to characterize the smoothness of OT
maps on infinite-dimensional spaces that leads to a
polynomial error rate.
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Challenges

¢ Main challenge #1: Relaxing the assumptions.

e Main challenge #2: Finding Computational tractable
algorithm with theoretical guarantees.
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arXivlink: https://arxiv.org/abs/2505.13570

Thank you!
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